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Large amounts of labeled data are a prerequisite to training accurate and reliable machine

learning models. However, in the medical domain in particular, this is also a stumbling

block as accurately labeled data are hard to obtain. DementiaBank, a publicly available

corpus of spontaneous speech samples from a picture description task widely used

to study Alzheimer’s disease (AD) patients’ language characteristics and for training

classification models to distinguish patients with AD from healthy controls, is relatively

small—a limitation that is further exacerbated when restricting to the balanced subset

used in the Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS)

challenge. We build on previous work showing that the performance of traditional

machine learningmodels on DementiaBank can be improved by the addition of normative

data from other sources, evaluating the utility of such extrinsic data to further improve the

performance of state-of-the-art deep learning based methods on the ADReSS challenge

dementia detection task. To this end, we developed a new corpus of professionally

transcribed recordings from the Wisconsin Longitudinal Study (WLS), resulting in 1366

additional Cookie Theft Task transcripts, increasing the available training data by an

order of magnitude. Using these data in conjunction with DementiaBank is challenging

because the WLS metadata corresponding to these transcripts do not contain dementia

diagnoses. However, cognitive status of WLS participants can be inferred from results

of several cognitive tests including semantic verbal fluency available in WLS data. In this

work, we evaluate the utility of using the WLS ‘controls’ (participants without indications

of abnormal cognitive status), and these data in conjunction with inferred ‘cases’

(participants with such indications) for training deep learning models to discriminate

between language produced by patients with dementia and healthy controls. We find

that incorporating WLS data during training a BERT model on ADReSS data improves

its performance on the ADReSS dementia detection task, supporting the hypothesis that

incorporating WLS data adds value in this context. We also demonstrate that weighted

cost functions and additional prediction targets may be effective ways to address issues

arising from class imbalance and confounding effects due to data provenance.
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1. INTRODUCTION

Alzheimer’s Dementia (AD) is a debilitating condition with
few symptomatic treatments and no known cure. According to
the Alzheimer’s Association, in 2018 an estimated 5.8 million
Americans were living with AD (Association, 2019). By 2050,
these numbers are projected to increase to 14 million people
with AD at a cost of $1.1 trillion per year (Association, 2019).
Diagnosis of this condition is often missed or delayed (Bradford
et al., 2009), and delays may occur over an extended period
with cognitive changes anticipating future dementia preceding
clinical diagnosis by as many as 18 years (Rajan et al., 2015;
Aguirre-Acevedo et al., 2016). Earlier diagnosis of AD has the
potential to ease the burden of disease on patients and caregivers
by reducing family conflict and providing more time for financial
and care planning (Boise et al., 1999; Bond et al., 2005; Stokes
et al., 2015). Delayed diagnosis of this condition also contributes
substantively to the cost of care of this disease on account of a
high utilization of emergency rather than routine care, amongst
other factors—it is estimated that early and accurate diagnosis
can help save an estimated $7.9 trillion in medical and care
costs (Association, 2018). Furthermore, survey findings show the
vast majority (∼80%) would prefer to know if their unexplained
symptoms of confusion ormemory loss were due to AD dementia
in a formal clinical evaluation (Blendon et al., 2011).

One path to earlier diagnosis of AD involves the application
of machine learning methods to transcribed speech, with the
publicly available DementiaBank corpus (Becker et al., 1994)
providing a focal point for research in this area. The majority
of this prior work has involved the application of supervised
machine learning methods (see e.g., Orimaye et al., 2014, 2017,
2018; Fraser et al., 2016; Yancheva and Rudzicz, 2016; Karlekar
et al., 2018; Cohen and Pakhomov, 2020) to classify groups
of transcripts, specific transcripts or even individual utterances
as to whether or not the participants producing them were
clinically diagnosed with dementia. While many of the methods
developed during the course of this research exhibited promising
performance, their performance is not strictly comparable on
account of differences in units of analysis, restrictions on
the inclusion of participants, evaluation metrics and cross-
validation strategies. Furthermore, the DementiaBank dataset
was constructed without case/control matching, resulting in
statistically significant differences in age and level of education
across the AD and control groups. Consequently there is a danger
that diagnostic performance of classifiers trained and evaluated
on this set may be overestimated on account of their ability
to learn to recognize these differences, rather than linguistic
indicators of AD.

2. BACKGROUND

The ADReSS challenge reference set was deliberately constructed
to remediate some of these issues with the original data (Luz
et al., 2020). This dataset represents a subset of the DementiaBank
data, matched for age and gender, with enhancement of the
accompanying audio data, and containing only a single transcript
for each participant (as opposed to the multiple transcripts
corresponding to multiple study visits per participant available

in the original set). As has been noted by the developers of
the ADReSS dataset, it has the potential to advance the field by
providing a standardized set for comparison between methods,
which is a welcome advance on account of previously published
work in this area often using different subsets of DementiaBank,
as well as different cross-validation strategies and performance
metrics. The ADReSS set and the accompanying challenge task
present a standardized approach to evaluation on two tasks—AD
recognition and Mini-mental State Exam (MMSE) prediction—
for comparative evaluation moving forward. However, it is also
true that this subset is even smaller in size than the original
DementiaBank set, with only 108 training examples and 54
test examples, both split equally between healthy controls and
participants with AD dementia.

In previous work, Noorian et al. (2017) demonstrated that the
performance of machine learning approaches in the context of
the DementiaBank set can be improved by providing the models
concerned with additional “Cookie Theft” transcripts derived
from other datasets. In this work, the authors introduced two
additional sets of transcripts: Talk2Me andWLS. The former is an
internal collection, while the latter is drawn from the Wisconsin
Longitudinal Study (Herd et al., 2014), an extended study of a
sample of students graduating from high school in Wisconsin
1957 born between 1938 and 1940 (initial n = 10,317), with some
participants performing the “Cookie Theft” picture description
task in a subsequent 2011 survey, aged in their early seventies.
The authors report the availability of an additional 305 and
1,366 transcripts from participants without AD in the Talk2Me
and WLS sets, respectively. In both cases, only recordings
were available for analysis—text features were extracted using
the Kaldi open source Automated Speech Recognition (ASR)
engine (Povey et al., 2011), with an estimated word error rate
of ∼12.5% on the Talk2Me data, and none provided for the
WLS set. As the additional data were considered as controls,
the ADASYN (He et al., 2008) synthetic sampling method
was used to oversample the minority “dementia” class. On a
random 80/20 train/test split of the DementiaBank data, the
authors report a considerable advantage in performance with the
addition of the WLS controls in particular, with improvements
of over 10% (absolute) in macro-averaged F-measure across a
range of machine learning methods trained on a set of 567
manually engineered features, with oversampling offering an
advantage over training without balancing the set in some but not
all methods.

In this paper we evaluate the extent to which the performance
of contemporary deep learning architectures can benefit from the
addition of data from the WLS set. After attaining the relevant
institutional approvals, we obtained all available “Cookie Theft”
recordings from the WLS collection, as well as professional
transcriptions of these recordings, to obviate the need to
consider ASR error in our subsequent analyses. We evaluate
the utility of the resulting transcripts as a means to improve
performance of transfer learning using pre-trained Transformer-
based architectures (Vaswani et al., 2017), focusing on the widely-
used Bidirectional Encoder Representations from Transformers
(BERT) model (Devlin et al., 2018) that has been shown to
outperform other machine learning methods on the ADReSS
challenge in recent work (Balagopalan et al., 2020).
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Combining text corpora drawn from different sources to
train NLP models should be approached with caution. Recent
NLP research has identified and attempted to address the
potentially deleterious role of confounding variables in text
classification (Landeiro and Culotta, 2018). A confounding
variable is a variable that can influence both a predictor and
an outcome of a predictive model. One manifestation of the
issue of confounding in NLP concerns a scenario in which
data are drawn from different sources (Howell et al., 2020),
each with different underlying class distributions. The WLS
and ADReSS sets exemplify this problem. The ADReSS set
is balanced by design, with an equal number of case and
control transcripts. However, while some indication of cognitive
impairment can be inferred from the metadata that accompanied
the WLS recordings, the control transcripts vastly outnumber
the cases in which data from cognitive tasks indicates such
impairment. Consequently, if differences in language use across
the populations from which these datasets are drawn were
to permit a machine learning model to distinguish between
the two sets, such a model may approach its optimization
objective of accurate classification by simply learning to label
all WLS examples as controls. In this context, the provenance
of a transcript serves as a confounding variable, because it
influences both the intended predictors (words in the transcript)
and the outcome of interest (whether or not the transcript
was produced by a healthy control). In the context of deep
neural networks for image recognition, it has been proposed that
the problem of confounding can be addressed by introducing
confounding variables of interest as additional model outputs
(Zhong and Ettinger, 2017). The authors of this work argue
that including confounding variables as secondary prediction
objectives will influence model weights via backpropagation,
resulting in models with better generalizability and overall
performance. This argument is supported by empirical results
demonstrating improved performance on an image classification
task when potential confounding variables indicating position
and orientation are incorporated as secondary targets for
prediction. Motivated by this argument, we evaluate the utility
of treating the provenance of a transcript (ADReSS vs. WLS) as a
secondary target for prediction on overall model performance,
with the secondary objective of determining the extent to
which deep neural networks can learn to distinguish between
unseen transcripts from each of these corpora. This secondary
objective is of interest because accurate classification of unseen
transcripts would confirm that there is systematic difference
between transcripts from each corpus that has the potential to
bias machine learningmodels, despite this not being immediately
apparent upon qualitative evaluation of randomly selected
transcripts during the process of data preparation.

A second concern with combining transcripts in this manner
is that it introduces a class imbalance, where transcripts from
healthy “controls” greatly outnumber those from patients with
dementia. Previous work with WLS data used oversampling of
the minority class to address this imbalance, which was effective
with some but not all models (Noorian et al., 2017). As recent
work with BERT suggests cost-sensitive learning is an effective
alternative to address class imbalance (Madabushi et al., 2019),

we evaluate the utility of this method also. Cost-sensitive learning
involves adjusting the loss function of a model such that changes
in performance on one class are weighted more heavily. In this
case this involves proportionally weighting the loss function as
an inverse function of the class distribution, such that the model
learns to avoid misclassifying transcripts from dementia patients
more assiduously than it learns not to misclassify those from
healthy controls. Finally, we note that unlike the ADReSS set, the
WLS transcripts do not come with diagnostic labels. However,
the metadata accompanying these transcripts do include results
of verbal fluency tests, as well as metadata indicative of clinical
diagnoses other than dementia. A straightforward way to use
these metadata involves developing an exclusion criterion, such
that transcripts from participants with verbal fluency scores
suggestive of diminished cognitive function are not treated as
controls. In an additional effort to address the class imbalance
introduced by the WLS data, we also experiment with treating
the below-threshold fluency scores appended to these excluded
transcripts as “noisy labels” (Natarajan et al., 2013) for the
presence of dementia.

Thus, our research aims to answer the following
key questions:

1. Does the performance of contemporary deep learning models
on the ADReSS challenge diagnosis task benefit from the
introduction of additional normative data comprising of
“Cookie Theft” recordings from outside the ADReSS (or
DementiaBank) set?

2. Does the addition of auxiliary outputs, or the incorporation of
a cost-sensitive weight function, provide a way to compensate
for the potential confounding effects and class imbalance
introduced by these additional normative data, respectively?

3. Can verbal fluency scores be used to derive “noisy labels” to
produce additional “case” training examples that are of value
for performance on this task?

4. Are the two corpora sufficiently different that a deep learning
model might learn to distinguish between them, during the
course of the classification procedure?

Our main contributions can be summarized as follows:

1. We introduce a new professionally transcribed data set of
1,366 transcripts of the “Cookie Theft” task

2. We use associated metadata to infer noisy “case” and “control”
labels for each transcript

3. We evaluate the utility of these additional data with and
without inferred labels to improve the performance of
transfer learning approaches on the ADReSS challenge
classification task

4. We compare a set of loss function alternatives as a means to
further improve performance.

3. MATERIALS AND METHODS

3.1. Dataset
3.1.1. ADReSS
The ADReSS dataset, derived from the DementiaBank dataset,
consists of 156 speech transcriptions from AD and non-AD
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patients which are matched for age and gender. Transcripts
are English language responses to the “Cookie Theft” task of
the Boston Diagnostic Aphasia Exam, and are classified as
“AD” or “control” on the basis of clinical and/or pathological
examination. We downloaded the ADReSS dataset from the
Alzheimer’s Dementia Recognition through Spontaneous Speech:
The ADReSS Challenge website1.

3.1.2. Wisconsin Longitudinal Study
TheWisconsin Longitudinal Study (WLS) is a longitudinal study
of a random sample of 10,317 graduates from Wisconsin high
schools in 1957. The study also includes a randomly selected
sibling of graduates, and spouses of graduates and siblings. WLS
participants were interviewed up to six times across 60-years
between 1957 and 2011. Beginning in 1993, during the fourth
round of interviews, theWLS included cognitive evaluations. The
“Cookie Theft” task was administered in the sixth-round of the
survey in 2011 survey (see Herd et al., 2014 for details). In July of
2019 the ongoing seventh round of data collection began.

3.2. Experiments
3.2.1. Dataset Construction
All audio samples in the WLS dataset were transcribed near-
verbatim by a professional service. The resulting near-verbatim
transcripts include filled pauses (um’s and ah’s) and tags for
unintelligible speech. The transcriptionists also separated the
speech of the examiner (containing task instructions and task-
final comments) from the participant’s response to the task. For
the purposes of the current study, we removed filled pauses and
unintelligible speech segments as well as the text corresponding
to the examiner’s speech.

The metadata of WLS do not currently provide dementia-
related diagnoses; however, they do provide a limited set of
cognitive test scores, and answers to questions about some
health conditions. Of relevance to the current research, WLS
participants underwent two category verbal fluency cognitive
tests in which they were asked to name all words that belonged
to a category (animals, food) in 1 min. The semantic (category)
verbal fluency task has been previously shown to be highly
sensitive (albeit not specific) to manifestations of AD dementia
(Henry et al., 2004) with an unadjusted for age and education
cutoff of 15 on the animal category recommended for use as a
screening instrument in a clinical setting (Duff-Canning et al.,
2004).

In order to identify a subgroup of healthy controls in the
WLS dataset comparable to controls in the ADReSS dataset we
used the verbal fluency scores and an answer of “yes” to the
question “Have you ever been diagnosed with mental illness?” as
inclusion/exclusion criteria as follows. We classified transcripts
of participants as cases (as opposed to healthy controls) if (1)
the participants had evidence of impairment in semantic verbal
fluency, or (2) have been diagnosed with a mental illness2.

1http://www.homepages.ed.ac.uk/sluzfil/ADReSS/
2We use a generic term “cases” for participants with potential cognitive

impairment and mental illness only as a way to distinguish them from controls,

as we expect their language production on the picture description task to differ

from that of controls. We do not in any way imply that a mental illness diagnosis

Prior work on verbal fluency performance in participants with
AD established that animal fluency scores <15 are 20 times
more likely in a patient with AD than in an healthy individual
and were found to discriminate between these two groups with
sensitivity of 0.88 and specificity of 0.96 (Duff-Canning et al.,
2004). Recognizing the fact that verbal fluency performance
does vary slightly by age and education (Tombaugh et al., 1999;
Marceaux et al., 2019), we used statistically determined age and
education-adjusted thresholds of 16, 14, and 12 for participants
in<60, 60–79, and>79 age ranges, respectively. We did not have
normative data available for the food category; however, since the
distributions of semantic verbal fluency scores on the “animal”
category and “food” category were very similar, we applied the
same cutoffs for the food category as for the animal category.

The initial set of 1,366 WLS participants was reduced to 1,165
by removing those with extremely long and short transcripts
whose length was beyond one standard deviation around the
mean length of a WLS transcript. Of the remaining WLS
participants with a “Cookie Theft” picture description task
transcription, 954 participants also had a category semantic
verbal fluency score or indicated a mental illness diagnosis.
Of these participants, 839 had a verbal fluency score above
the normative threshold and did not have a mental illness
diagnosis. These were labeled as “controls.” Of the remaining 115
participants, 98 had a verbal fluency score below the threshold
and 20 had amental illness diagnosis. These 115 participants were
labeled as “cases.”

Descriptive statistics for the ADReSS and WLS datasets are
shown in Table 1. The mean ages of WLS controls and cases at
the point of data collection are lower than those of participants
whose transcripts make up the ADReSS dataset. Upon analysis of
the differences in age of participants between the two corpora, we
found that while there was no statistically significant difference
[t(1108) = 4.3, p = 1.96] in the overall age of ADReSS (M =

65.6, SD = 6.6) and WLS participants (M = 63.9, SD = 4.1),
nor in the age of controls [t(915) = 1.3, p = 0.19]3, there was a
significant difference between the ages of AD cases in the ADReSS
set and inferred WLS “cases” [t(191) = 4.6, p < 0.001]. While
statistically significant, this difference in mean ages is relatively
small (2.3 years) and may be of limited practical significance.
Gender distributions among these two datasets are similar. In
both theWLS andADReSS sets, a larger proportion of the control
group attained post-high-school education.

3.2.2. Model
Bidirectional Encoder Representations from Transformers
(BERT Devlin et al., 2018) provides a pretrained deep neural
network for researchers and practitioners to fine tune on specific
tasks by adding just one additional output layer (Liu and Lapata,
2019). BERT exemplifies the “transfer learning” approach
that has been used to improve performance across a range

is related to cognitive impairment. However, in the absence of specific metadata

related to the presence of dementia, we decided it would be better to exclude these

participants from the control set also.
3T-test results are reported in APA style: t(degrees of freedom) = the t statistic,

p = p-value. The abbreviations M and SD stand for mean and standard

deviation, respectively.
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TABLE 1 | Dataset description.

ADReSS WLS

Control Case P-value Control Case P-value

n 78 78 839 115

Age, mean (SD) 65.0 (7) 66.3 (7) 0.226 63.9 (5) 63.9 (4) 0.902

Gender, n (%) Female 43 (55) 43 (55) 1 295 (35) 32 (28) 0.995

Male 35 (45) 35 (45) 213 (25) 23 (20)

Refused/Missing 0 0 331 (40) 60(52)

Education, n (%) ≤12 years 34 (44) 52 (67) 0.002 401 (48) 78 (68) <0.001

>12 years 43 (55) 22 (28) 438 (52) 37 (32)

Refused/Missing 1 (1) 4 (5) 0 0

Two-sample t-tests were used to evaluate the p-value for continuous variables, and Chi-squared was used for categorical variables.

of classification tasks in image and text processing in recent
years. Essentially, transfer learning allows for the application of
information learned while training a model on one task, to a
different one. In the case of BERT for text classification, the initial
task involves predicting held out (“masked”) words or sentences
in a large corpus of otherwise unlabeled text. The general
information about word distribution and relative position
learned in this manner can then be applied to a downstream
classification task, with or without fine-tuning the weights of
BERT in addition to a classification layer that is appended to
this pretrained deep neural network model. Unlike previous
recurrent neural network approaches, BERT allows the model
to process words in relation to all other words in a passage in
parallel rather than sequentially, enhancing the scalability of
the pre-training procedure. An important feature of BERT is
its use of attention modules (Vaswani et al., 2017), which take
into account other words in a unit of text when generating
a word representation during pre-training and subsequent
tasks. BERT can therefore take the broader context of a word
into consideration, with the capacity to resolve ambiguities in
contextual word meaning. Most importantly, the information
acquired during the pre-training process enables BERT to
perform well even when only small amounts of annotated
data are available for fine tuning. Following previous work,
we modified BERT by adding a classification layer, to obtain
binary class labels corresponding to “cases” and “controls” in the
ADReSS dataset.

3.2.3. Loss Functions
We evaluated the utility of several variants of the BERT loss
function as a means to compensate for class imbalance, and
potential confounding effects. The standard loss function for
categorization with BERT (as implemented in the widely used
Hugginface Transformers library4) is the CrossEntropy loss,
which combines a softmax function with the standard Cross
Entropy loss. This encourages a model to choose one of a set of
possible classes in a text categorization class, by convertingmodel
outputs into a series of probabilities across classes, which sum to
one across all classes, before calculating the loss. For multi-label

4https://github.com/huggingface/transformers

classification, where more than one label can be assigned (in
our case, diagnosis = [case|control], source = [WLS|ADRess]),
a reasonable alternative is to use the BCEwithLogits (BCE)
loss function, which does not require probabilities as inputs. As
this loss function also provides a convenient means to weight
classes, we retained it for our experiments with cost-weighting as
a means to compensate for class imbalance by applying a weight
of n

c for each class, where n is the number of transcripts in the
set, and c is the number of transcripts of the class of interest.
Less frequent classes (the “dementia” class when WLS is used)
will have more influence on the cost function, as they will have
a smaller denominator. In order to isolate the effects of this
loss function from the multilabel and weighted configurations
of it, we also report results with an unweighted edition of the
BCEwithLogits loss, as well as the standard loss function.

3.2.4. Methods and Evaluation
To evaluate the effect of adding more data, the WLS control and
WLS total sets (case and control) were added to the ADReSS
training set separately. We used the single unique ADReSS test
set as the testing set for all models, and evaluated the models by
accuracy and area under the receiver-operator curve (AUC). We
also performed cross-validation (CV) on the training set.

We report evaluation metrics with 5-fold CV (rather than the
leave-one-subject-out protocol used in some prior work) due to
memory and time constraints. In this case, values of evaluation
metrics were averaged across CV folds. To evaluate performance
on the test set, we generated 10 instantiations of eachmodel using
different random seeds to determine the initialization of classifier
weights for each instantiation. We trained each of these models
on the training set (± the WLS components) and reported the
mean and standard error across these ten runs. For two class
label prediction, we evaluated models with the standard loss
function, a weighted BCE loss function, and an unweighted BCE
loss function. Finally, we evaluated a multi-label classification
model (AD, not AD, ADReSS, WLS), using an unweighted BCE
loss function.

3.2.5. Training Details
All experiments were conducted with the 12-layer
bert-base-uncased model. Experiments using cross-
validation on the training set were run on a single NVIDIA Tesla
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P-40 GPU, while experiments with evaluation on the test set
were run on a single NVIDIA Tesla V-100 GPU. All models were
developed using Python 3.7 and PyTorch 1.2.0. We used the
Transformers library to implement BERT in PyTorch (Wolf
et al., 2019), permitting fine-tuning of BERT model weights in
addition to tuning of the classification layer. The maximum
sentence length was set to the maximum length of the current
training set, and the batch size was set to 8. The learning rate
was set to 1 × 10−5. All models were run for 20 epochs. We
adopted the Adam optimizer (Kingma and Ba, 2014) with linear
scheduling (Paszke et al., 2019) of the learning rate. For the BCE
loss function, nn.BCEWithLogitsLoss was used. Other
hyper-parameters were set to their default values.

4. RESULTS

The results of our 5-fold cross-validation experiments are shown
in Table 2. When interpreting this table it is important to bear
in mind that the cross-validation splits in the WLS control and
WLS total scenarios include examples from the respective WLS
sets also. Thus, they are not comparable to one another, nor are
they comparable to the results shown with the ADReSS set only.
However, it is informative to compare the results within each
panel in turn (aside from the ADReSS-only result, which provides
an indication of the robustness of the results from the train-test
split used in the challenge). It is also important to note that the
standard error of the mean (indicated with±) is calculated across
the five cross-validation folds, and consequently are indicative of
the differences between the validation sets in these folds, rather
than differences emerging from stochastic initialization of the
classification layer of the BERT models concerned (these were
initialized with the same random seed).

Both the WLS control and WLS total results suggest a
trend toward an advantage for the loss function variants under
consideration, as compared with the standard loss function, with
unweighted and weighted variants of the BCE loss function
generally outperforming the standard loss function. In addition,
the best results in most cases are attained by themultilabel model.
This suggests that augmentation of the model with additional
targets for prediction may be helpful to reduce the confounding
effect of the provenance of the transcripts concerned, when
transcripts from both sources are included in the validation set.
However, we note that one exception to this finding is the AUC
in the WLS total set—in this configuration, the standard loss
function performs best. The relatively poor performance with
the addition of the “WLS total” set in 5-fold CV may result
from discrepancies between the noisily labeledWLS cases and the
clinically determined ADReSS AD dementia cases.

Results on the held-out ADReSS challenge test set are shown
in Table 3, with the model trained on the ADReSS training set
only and using the standard loss function taken as a baseline
(these baseline results are largely consistent with the 5-fold
cross-validation results on this set, suggesting the test set is
representative of the data set as a whole). When comparing
results from the three models trained with a standard loss
function to evaluate the impact of the WLS data on a standard

TABLE 2 | Five-fold cross-validation results on training set.

Data Loss function % Accuracy % AUC

ADReSS Standard 80.5 ± 4.0 88.2 ± 3.1

ADReSS + WLS control Standard 96.5 ± 0.3 98.7 ± 0.3

Weighted BCE 97.4 ± 0.3 98.9 ± 0.2

Unweighted BCE 97.4 ± 0.3 98.8 ± 0.4

Multilabel BCE 97.9 ± 0.5 99.2 ± 0.1

ADReSS + WLS total Standard 83.3 ± 1.2 68.8 ± 0.6

Weighted BCE 83.7 ± 1.4 61.2 ± 2.8

Unweighted BCE 83.7 ± 1.4 65.7 ± 2.8

Multilabel BCE 84.8 ± 1.3 66.1 ± 1.6

Results shown are the mean across the 5-folds± the standard error. Best results in panels

showing multiple models are in boldface.

TABLE 3 | Results on ADReSS test set.

Data Loss function % Accuracy % AUC

ADReSS Standard 79.8 ± 0.9 88.3 ± 0.5

ADReSS + WLS control Standard 81.2 ± 1.1 90.6 ± 0.9

Weighted BCE 82.1 ± 1.0 92.3 ± 0.4*

Unweighted BCE 80.8 ± 1.1 91.6 ± 0.3*

Multilabel BCE 81.2 ± 0.5 90.6 ± 0.5*

ADReSS + WLS total Standard 81.9 ± 1.1 91.2 ± 0.9*

Weighted BCE 80.8 ± 0.6 89.3 ± 0.9

Unweighted BCE 80.8 ± 1.1 88.9 ± 0.5

Multilabel BCE 80.4 ± 0.9 91.2 ± 0.4*

Results shown are the mean across ten iterations ± the standard error. *Indicates

statistically significant difference from the baseline, as estimated by a paired t-test (as

each repeated train/test evaluation was initialized with the same random seed across

models). Best results in panels showing multiple models are in boldface.

BERT classifier, we find both incorporating additional WLS
controls, and the WLS total data (with controls and noisy labels
for cases) leads to improvements over the baseline model. On
account of the small number of test cases, only the advantages
in AUC are statistically significant—presumably on account of
accuracy generally having higher variance across runs than the
AUC (as a small change in the predicted probability of an
example may lead to a larger change in accuracy if this crosses
the classification boundary and leads to error). Nonetheless,
the general trend supports the hypothesis that the additional
normative data will improve the performance of BERT on the
ADReSS challenge diagnosis task.

When comparing the loss function variants, we observe that
those models trained on the ADReSS set with the addition of
WLS controls only using the weighted BCE function achieves the
best AUC and accuracy amongst all the models, suggesting that
weighting the loss function is an effective way of compensating
for the class imbalance that results from these additional
“control” data points. More importantly, this model significantly
improves AUC compared to the baseline model in the test set.
Unlike the 5-fold CV scenario, the multi-label loss function does
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not lead to better performance than the standard loss function—
which is perhaps unsurprising given the total absence of WLS
data in the test set, obviating the need to resolve confounding
effects emerging from data provenance. That the unweighted
BCE function also does not improve performance over the
standard function supports the hypotheses that it is indeed the
weighting of this function that is responsible for its advantages
in performance.

An additional finding from these experiments is that the
multilabel models correctly identified the provenance of the
ADReSS-derived examples in the test set with perfect accuracy
in nine of 10 runs, and ∼98% accuracy on the remaining
run. These results strongly support the hypothesis that a deep
learning model trained on data from both corpora would learn
to distinguish between them. This finding is further supported
by a perfect accuracy in distinguishing between these corpora in
the held-out validation split (including both WLS- and ADReSS-
derived examples) demonstrated in a subsequent run.

The results with the inclusion of “noisy” WLS cases differ
from those with controls alone. With the standard loss function,
the addition of these data improves performance beyond that
attained by adding WLS controls alone. However, performance
does not match the best of the “control only” models, and
is not improved further with the addition of variant loss
functions. One explanation for the latter finding may be that class
imbalance effects are already obviated through the introduction
of additional cases, increasing the positively labeled training
examples from∼5 to∼16% of the data available for training.

5. DISCUSSION

In this paper, we evaluated the utility of the incorporation of
additional “Cookie Theft” transcripts drawn from the Wisconsin
Longitudinal Study as a means to improve the performance of a
BERT-based classifier on the ADReSS challenge diagnosis task.
Our aims in doing so were primarily to evaluate whether or
not these data would improve performance, but also to establish
the extent to which weighting the cost function of the model
and representing corpus provenance as additional targets for
prediction could compensate for the issues of class imbalance
and corpus-specific confounding effects, respectively. Finally, we
wished to determine whether or not a model could learn to
distinguish between the two corpora, to determine if our concern
about such corpus-specific confounding effects was justified.

We found that incorporation of WLS data improved
performance over that of a model trained on ADReSS data
alone, and that these improvements were present both when
only WLS “controls” (transcripts from participants with verbal
fluency scores in the normal range for their age) were added,
and when these were combined with noisily-labeled WLS “cases”
(transcripts from participants with low verbal fluency scores,
or reported diagnoses related to mental illness). When only
controls were added, further improvements in performance were
obtained when weighting the cost function to compensate for
class imbalance, resulting in the best-performing models on the
ADReSS challenge test set, with a mean accuracy of 82.1% and

mean AUC of 92.3% across ten repeated instantiations of the
model, as opposed to a mean accuracy and AUC of 79.8 and
88.3%, respectively, without the addition of WLS data.

While we note that Balagopalan et al. (2020) report an
accuracy of 83.3% with a BERT-based classifier on this task
when trained on the AD set alone, these experiments did not
include repeated model instantiations to determine the effects
of stochastic initialization of classifier weights on performance,
that our baseline AD-only BERT model attained an accuracy
of 83.3 or higher on two of ten such iterations, and that the
best performance of the cost-weighted model across iterations
resulted in an accuracy of 89.6% (with an AUC of 94.8%).
This difference in baseline performance may be attributable
to differences in stochastic initialization, or an unspecified
difference in model architecture (e.g., BERT-base vs. BERT-large)
or hyperparameter settings, and we do not believe it detracts from
the strength of our conclusions.

While most of the work with the ADReSS challenge data
has focused on multimodal analyses of acoustic and transcript
data simultaneously, the paper introducing this data set provides
some baseline results with language-only models, which were
trained on a set of thirty-four linguistic outcome measures (such
as total number of utterances, and part-of-speech percentage)
(Luz et al., 2020). Test set classification accuracy is generally
lower than results attained using BERT trained on raw text
(even without the addition of WLS data), ranging from 0.625 to
0.792 across algorithms. Best performance was attained using a
Support Vector Machine, though this configuration performed
worse than other algorithms in cross-validation experiments.
This suggests that BERT is able to automatically extract predictive
features that outperform handcrafted features. However, it
should be noted that BERT has considerably more trainable
parameters than the models evaluated in this prior work, and
that a fair comparison between BERT-based and engineered
features would require the ascertainment of BERT’s performance
with freezing of all layers aside from the classification layer.
Other work focusing on linguistic features explores the utility of
using terms as features directly. Searle et al. (2020) compared
machine learning models applied to word-level features to
the DistilBERT architecture, reporting tied best accuracies of
81% with DistilBERT and an utterance-level combination of
a Support Vector Machine and Conditional Random Field
classifier. Additional work suggests that incorporation of acoustic
features may offer further advantages in performance. Syed et al.
(2020) demonstrated an accuracy of 85.4% with a multimodal
learning system that incorporated both audio signals and
transcripts. BERT and RoBERTa were included in themultimodal
framework. These results suggest that incorporating additional
information from auditory features may suggest a path toward
further improving the performance of ourmodels, although there
are technical challenges concerning the differences in recording
instruments across data sets that would need to be addressed in
order to explore this.

In the context of 5-fold cross-validation experiments, where
both WLS- and ADReSS-derived examples were present in the
validation splits, adding transcript provenance as an additional
target for prediction in a multi-label setting resulted in best
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performance, supporting the hypotheses that this may be an
effective way to address corpus-specific confounding effects,
which are an important concern in biomedical machine learning
when there is a need to assemble a data set from smaller
constituents thatmay have been collected at different institutions.
Of particular interest for future work, these models also
learned to classify the provenance of the data sets concerned
with perfect or near-perfect accuracy, suggesting systematic
differences between the source corpora that were not apparent
upon informal inspection of word usage and lexical patterns.
Further research is required to determine the cues used by the
models to make these distinctions.

The results presented in this paper should be interpreted in
light of several limitations. First, the ADReSS dataset is relatively
small. The results reported here need to be replicated on larger
datasets to determine their generalizability. Second, while the
WLS dataset contains a very rich set of participant characteristics,
these characteristics do not include those that can be used
directly for characterization of AD dementia. Thus, the results
pertaining to WLS cases should be interpreted with caution.
In particular, while utilization of mental health diagnoses to
exclude transcripts from the analysis is readily justifiable, using
these diagnoses to derive noisy labels for cases may exceed the
bounds of noise that our models can tolerate. In future work we
will evaluate the extent to which using verbal fluency derived
criterion only leads to noisy labels with greater downstream
utility. We note also that efforts are currently underway to
interview WLS participants in order to obtain clinical diagnoses
of dementia. We anticipate this measure will be available for
all eligible participants within a few years of the time of this
writing, which will further enhance the utility of our transcripts
for future research on the linguistic manifestations of dementia.
Third, cases in both datasets are significantly less educated
than the controls which may result in language use artifacts
that have not been accounted for. These potential differences
in language use should be further investigated. There are also
some methodological alternatives that we did not fully consider
in the current work. Our study did not consider the acoustic
components of the available data, and depended upon manual
transcriptions of speech data. Further research is needed to
determine the utility of incorporating acoustic features, as well as
the model’s robustness to errors that may be introduced during
the process of automated speech recognition. Furthermore, we
did not formally evaluate oversampling strategies. Preliminary
experiments with random oversampling suggested this would not
be a fruitful strategy, and to our knowledge BERT-based strategies
for similarity-based oversampling have yet to be developed. In
addition we have yet to evaluate the combination of auxiliary
prediction targets with weighting of the cost function, which
may be a productive direction to pursue in future work on
account of their individual utility when transcripts from both
corpora are present at the point of validation. Finally, the utility
of auxiliary targets as a means to obviate for confounding effects
may be more readily apparent when the distribution of positive
cases across corpora is different at test time than at training
time (Landeiro and Culotta, 2018). Establishing whether or not
this is the case would require additional evaluation involving

validation sets in which these distributions are artificially
modified.

6. CONCLUSION

In this paper, we evaluated the utility of using additional “Cookie
Theft” picture description transcripts from the Wisconsin
Longitudinal Study, as a means to improve the performance of
a BERT-based classification approach on the dementia detection
task of the ADReSS challenge. Our results indicate that training
on these additional data leads to improved performance on this
task, both when using all available transcripts as normative data
regardless of cognitive status and subsets of the data extracted
based on cognitive status inferred from available metadata (i.e.,
verbal fluency and mental health status). In the former case in
particular, we find that weighted cost functions are an effective
way to compensate for the class imbalance introduced by the
addition of more “control” transcripts. Furthermore, results from
our cross-validation studies suggest that introducing dataset
provenance as an auxiliary target for prediction shows potential
as a means to address different case/control distributions when
combining datasets drawn from different sources. As such, our
results suggest that our professionally transcribed WLS “Cookie
Theft” transcripts are a valuable resource for the development
of models to detect linguistic anomalies in dementia. These
transcriptions are available upon request from wls@ssc.wisc.edu.
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