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Abstract

Hallucinated outputs from large language models (LLMs) pose risks in the
medical domain, especially for lay audiences making health-related deci-
sions. Existing automatic factual consistency evaluation methods, such as
entailment- and question-answering (QA) -based, struggle with plain lan-
guage summarization (PLS) due to elaborative explanation phenomenon,
which introduces external content (e.g., definitions, background, examples)
absent from the scientific abstract to enhance comprehension. To address
this, we introduce PlainQAFact, an automatic factual consistency evalua-
tion metric trained on a fine-grained, human-annotated dataset PlainFact,
for evaluating factual consistency of both source-simplified and elaborately
explained sentences. PlainQAFact first classifies sentence type, then ap-
plies a retrieval-augmented QA scoring method. Empirical results show that
existing evaluation metrics fail to evaluate the factual consistency in PLS,
especially for elaborative explanations, whereas PlainQAFact consistently
outperforms them across all evaluation settings. We further analyze Plain-
QAFact’s effectiveness across external knowledge sources, answer extraction
strategies, answer overlap measures, and document granularity levels, refin-
ing its overall factual consistency assessment. Taken together, our work
presents the first evaluation metric designed for PLS factual consistency
evaluation, providing the community with both a robust benchmark and
a practical tool to advance reliable and safe plain language communication
in the medical domain. PlainQAFact and PlainFact are available at:
https://github.com/zhiwenyou103/PlainQAFact.
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1. Introduction

Communicating biomedical scientific knowledge in plain language is essen-
tial for improving health information accessibility and health literacy [1, 2].
Recent advances in large language models (LLMs) have made significant
progress in plain language summarization (PLS) of biomedical texts [3, 4, 5,
6]. However, ensuring the factual consistency of these summaries remains a
major challenge. A key source of inconsistency stems from elaborative expla-
nations : content such as definitions, background information, and examples
that enhance comprehension but are not explicitly present in the original sci-
entific abstracts (i.e., source) [7, 8, 9]. While such elaborations are critical for
effective communication, they introduce external content that cannot be di-
rectly verified against the source, complicating automatic factual consistency
evaluation.

Factual consistency in PLS is typically assessed through a combination of
human evaluation and automated metrics [3, 10]. While human evaluation is
reliable [11], it is costly and difficult to scale, particularly in biomedical con-
texts where domain expertise is required. Commonly used factuality metrics
can effectively verify content supported by the source but fail to assess fac-
tual consistency of added information [12]. However, these metrics depend
heavily on high-quality reference summaries, which are often unavailable in
plain language summaries. Recent prompt-based evaluation techniques show
promise [13, 14], but their sensitivity to factual perturbations in elaborative
content remains limited [12].

The lack of suitable benchmark datasets further hinders progress. Many
existing datasets are constructed from LLM-generated summaries or apply
rule-based perturbations to simulate non-factual content. For example, Fact-
PICO provides expert annotations for plain language summaries of random-
ized controlled trial abstracts, focusing on PICO elements and evidence in-
ference [9]. However, it includes factuality labels only for added content,
leaving simplified sentences unannotated, which are generated by LLMs and
potentially inaccurate. In contrast, APPLS perturbs human-written sum-
maries using rule-based transformations [12], but cannot ensure that the
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resulting outputs remain coherent or factually plausible. These limitations
underscore the need for high-quality, sentence-level annotations grounded in
human-authored summaries.

Figure 1: Overview of PlainQAFact. A fine-tuned classifier first identifies the sen-
tence type, involving either source simplification or elaborative explanation. Then, a
QA-based evaluation pipeline performs answer extraction, question generation, question
answering, and answer overlap evaluation. For elaborative content not present in the sci-
entific abstract, PlainQAFact retrieves external knowledge to verify factual consistency.
The illustrated example shows an elaborative explanation involving a “bronchodilator” not
mentioned in the source abstract but verifiable through external evidence. PlainQAFact
assigns a high score, reflecting strong alignment between the extracted and gold answers.

To address these challenges, we propose a targeted retrieval-based metric
for factual consistency evaluation in PLS (Figure 1). We introduce a new
expert-annotated dataset, PlainFact, consisting of human-written plain
language summaries aligned with scientific abstracts. Each sentence is la-
beled with its type (elaborative explanation vs. source simplification), func-
tional role, and alignment to the source (§3.1). Building on this, we present
PlainQAFact, a dual-stage QA-based evaluation metric that selectively
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applies retrieval only to elaborative explanations (§3.2). This design ensures
both efficiency and fidelity in evaluating factual consistency. Experiment re-
sults on several PLS datasets demonstrate the effectiveness of our approach,
particularly in assessing complex, elaborative content (4, §5). Taken together,
our work presents the first evaluation metric designed for PLS factual con-
sistency evaluation, providing the community with both a robust benchmark
and a practical tool to advance reliable and safe plain language communica-
tion in the medical domain.

2. Related Work

Limitations of Existing Factuality Evaluation. The primary approach for
evaluating plain language generation combines automated metrics with hu-
man evaluation [3, 10]. While human assessment provides a thorough anal-
ysis [11], its high cost and time demands make it impractical for large-scale
datasets. Evaluating factual consistency in biomedical PLS is particularly
challenging, as it requires domain expertise. Entailment- [15, 16], similarity-
[17, 18], model- [19] and QA-based [20, 21] metrics are commonly used for
factual consistency assessment but rely heavily on high-quality reference sum-
maries, which are often unavailable or difficult to obtain for PLS. Recent
advancements in prompt-based evaluation show promise [13]; however, their
sensitivity to factuality perturbations in PLS remains limited [12]. To address
these limitations, we propose a reference-free solution for factual consistency
evaluation of PLS that effectively assesses factual consistency with external
information retrieval to augment the reference summary.

Retrieval-Augmented Generation. Retrieval-augmented methods enhance text
generation by extracting relevant information from external sources to sup-
plement input queries [22]. These methods have been shown to be effective in
open-domain QA [23, 24], knowledge-based QA [25], and multi-step reasoning
[26, 27]. In the context of PLS, retrieval from structured knowledge bases
(KBs) has been shown to improve factual accuracy compared to language
models alone [28]. However, retrieval-augmented approaches have not been
extensively explored for factual consistency evaluation in PLS, despite their
potential for addressing elaborative explanations. In this work, we investi-
gate retrieval-augmented QA to enhance PLS factual consistency assessment
while also examining its limitations.
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3. Methods

We first introduce the protocol of PlainFact dataset curation (§3.1).
Based on this dataset, we propose PlainQAFact, a two-stage retrieval-
augmented QA framework for factual consistency evaluation in PLS tasks
(§3.2).

3.1. PlainFact Benchmark
To develop a high-quality factual consistency evaluation benchmark in

PLS tasks, we collect a subset from the largest human-authored CELLS [28]
dataset (§3.1.1) and hire domain experts to provide fine-grained sentence-
level annotations (§3.1.2).

3.1.1. Human-Authored PLS Dataset
Rather than relying on LLM-generated plain language summaries, we con-

struct our benchmark using human-authored summaries. CELLS [28], the
largest parallel corpus of scientific abstracts and their corresponding plain
language summaries, is written by the original authors and sourced from 12
biomedical journals. We primarily select data from the Cochrane Database of
Systematic Reviews (CDSR)1 within CELLS, as CDSR contains systematic
reviews that support evidence-based medical decision-making across health-
care domains [29]. Since systematic reviews represent the highest level of sci-
entific evidence, this selection enhances the factual rigor of our dataset. To
ensure readability, we filter the 200 most readable plain language summaries
based on average scores from three standard readability metrics: Flesch-
Kincaid Grade Level (FKGL) [30], Dale-Chall Readability Score (DCRS)
[31], and Coleman-Liau Index (CLI) [32]. Additionally, given the collected
plain language summaries from CELLS are all factual, we further conduct
sentence-level perturbation to transform each plain language sentence into
incorrect ones. Specifically, we use GPT-4o2 to perturb each plain language
sentence based on prompts introduced in Guo et al. [12]. Therefore, for
PlainFact, we have 400 summary-abstract pairs in total, where 200 factual
pairs and 200 non-factual pairs.

1http:///www.cochranelibrary.com
2We use gpt-4o-2024-11-20 version for all experiments of GPT-4o in this paper.
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Elaborative Explanation Source Simplification

# of Sentences 1,213 1,527
Average Length (token) 29 28
Vocabulary Size 4,230 4,046
Has Reference 417 1,527
# of Background 533 329
# of Definition 82 44
# of Method/Result 512 1,107
# of Example 10 3
# of Other 76 44

FKGL ↓ 12.5 12.4
DCRS ↓ 11.3 11.6
CLI ↓ 13.5 13.9

Table 1: Overview of the PlainFact benchmark. Medical experts annotated 200 pairs
of plain language summaries and their corresponding scientific abstracts from the CELLS
dataset [28], categorizing each plain language sentence as either a source simplification or
an elaborative explanation related to the abstract. Lower scores of FKGL, DCRS, and
CLI indicate better readability.

3.1.2. Expert Annotation
Since each summary-abstract pair is authored by the same individual, we

assume all information to be factual. The annotation aims to capture how
plain language sentences relate to their scientific abstracts. Annotators an-
alyze each plain language sentence across three dimensions: (1) Factuality
type: identify whether a sentence is a source simplification (derived from
the abstract) or an elaborative explanation (introducing new content); (2)
Functional role: categorize the sentence as background, definition, exam-
ple, method/result, or other; and (3) Sentence alignment: map each plain
language sentence to its corresponding sentence(s) in the scientific abstract.
Details of annotation guidelines are provided in Appendix A.

Annotations are conducted by four independent annotators, each with at
least a bachelor’s degree in biomedical sciences and prior fact-checking expe-
rience. Annotators are recruited via Upwork and compensated from $15 to
$20 per hour. Each summary-abstract pair is annotated by two independent
annotators, with disagreements resolved by a third. Inter-rater agreement,
measured by Cohen’s Kappa for factuality type, functional role, and sentence
alignment are 0.43, 0.60, and 0.55 respectively, indicated moderate agreement
for all tasks [33].
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Table 3.1.1 summarizes the dataset characteristics. Notably, 44% of plain
language sentences are elaborative explanations, highlighting their role in en-
hancing the readability of plain language summaries. 66% of these cannot be
directly verified against the source abstract, which underscores the need for
factuality evaluation methods that account for such phenomena. Moreover,
elaborative explanations include more background, definitions, and examples
than source simplifications. For annotation examples, see Appendix B.

3.2. PlainQAFact Framework
PlainQAFact conducts fine-grained factual consistency evaluation for

plain language summaries by first segmenting each summary into sentences,
classifying as either simplification or explanation, and retrieving tailored ex-
ternal knowledge within a retrieval-augmented QA framework. Figure 1 pro-
vides an overview of its three key components: sentence-level classification
(§3.2.1), domain knowledge retrieval (§3.2.2), and dual-stage QA-based fac-
tual consistency evaluation (§3.2.3).

3.2.1. Learned Factuality Type Classifier
As elaborative explanations are prevalent in plain language generation

and existing metrics struggle to capture added information [12], we first fine-
tune a pre-trained language model to categorize factuality types of plain
language sentences. Based on the factuality type annotations (source sim-
plification vs. elaborative explanation) in PlainFact, we fine-tune the
PubMedBERT-base model3 as a classifier. Our PlainFact is split 8:1:1 for
training, validation, and testing. Additionally, we compare the pre-trained
classifier with GPT-4o [34] as a zero-shot classifier (prompts are provided
in Appendix C) to explore extending our factual consistency evaluation met-
ric to domains and tasks lacking human-annotated data.

3.2.2. Domain Knowledge Retrieval
Retrieval-augmented methods have proven effective for explanation gen-

eration [28, 35], making them a natural fit for evaluating elaborative explana-
tions. Since our dataset is in the medical domain, we employ MedCPT [36], a
retriever pre-trained on large-scale PubMed search logs to generate biomed-
ical text embeddings. For external resources, we incorporate StatPearls [37]

3https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
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for clinical decision support and medical textbooks [38] for domain-specific
knowledge.

3.2.3. QA Evaluation Components
QA-based metrics have proved to be effective than other factual con-

sistency evaluation metrics [12] in general summarization tasks and align
more closely with human annotations [20, 39]. In this study, we adopt a
QA-based approach as a backbone of our evaluation metric to verify factual
consistency, incorporating answer extraction, question generation, question
filtering, question answering, and answer overlap calculation modules.

Gold Answer Extraction. The first step in QA-based factual consistency eval-
uation is to extract answer entities (keyphrases) from plain language sum-
maries as gold answer, then verify factuality by comparing them with an-
swers generated by a QA model for the same questions. If the generated an-
swer is correct or relevant, the summary is considered factual. The previous
study used PromptRank [40], a keyphrase generation method based on the
T5 model. To compare answer extraction strategies, we use PromptRank as
the baseline, and evaluate LLM-based extractors, including an open-source
Llama 3.1 8B Instruct model (Llama 3.1) [41] and close-source GPT-4o
(GPT-4o) [34]. Prompts for Llama 3.1 and GPT-4o are in Appendix C.

Question Generation (QG). Given an input plain language summary, the
QG model generates questions based on the extracted answers (§3.2.3) and
the input plain language summary. Following previous studies [20, 21]4, we
fine-tune BART-large model on standard QG datasets, including SQuAD [42]
and QA2D [43], for use as the QG model in our evaluation metric. The QG
model will generate multiple relevant questions based on the input, which
will increase the probability of verifying the factual consistency by answering
these questions in the following stages.

Question Filtering (QF). Questions generated by the QG model (§3.2.3) may
not always be answerable. For example, the QG model generates “<What
can occur over several days?>,” which is vague and hard to predict the correct
answer. To prevent these unanswerable questions from impacting the final

4These studies use allennlp, an open-source NLP research library built on PyTorch,
which is no longer actively maintained.
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evaluation performance, we follow QAFactEval [39] and remove the unan-
swerable questions using a pre-trained Electra-large model [44]. During
QF, the filtering model receives only the plain language summary and its
corresponding questions. In the subsequent QA stage (§3.2.3), answers are
extracted from the source for answer overlap evaluation, while QF only deter-
mines whether the questions can be answered by the plain language summary.

Question Answering. The QA model extracts answers to answer the filtered
questions from the source document. To prevent hallucinated output, we use
an extractive QA model, a pre-trained Electra-large, which was the best
performing QA model in QAFactEval [39].

Answer Overlap Evaluation (AOE). We evaluate the alignment between the
gold and generated answers from the QA model using the baseline Learned
Evaluation metric for Reading Comprehension (LERC) score [45] and BERTScore
[46]. The final step in PlainQAFact is weighting the factual consistency
scores for source simplification and elaborative explanation sentences. Specif-
ically, the simplification score s is computed using only abstracts as the source
in QA, while the explanation score e is calculated by incorporating both ab-
stracts and retrieved knowledge as source for QA-based evaluation.

PlainQAFact =
sAvg. · ns + eAvg. · ne

ns + ne

, (1)

where ns is the number of simplification sentences, and ne is the number
labeled as explanation. sAvg. and eAvg. denote the average PlainQAFact
scores computed for instances classified as simplification and explanation
sentences, respectively.

4. Experiments

We conduct main experiments on three publicly available datasets, includ-
ing PlainFact, CELLS [28], and FareBio [47]. To verify the effectiveness
of our proposed PlainQAFact on PLS tasks, we compare with five widely
used factual consistency evaluation metrics and two LLM-based evaluators.

4.1. Datasets
As introduced in Sec 3.1, we create PlainFact with fine-grained sentence-

level annotations regarding the factuality types. Additionally, to test the
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generalizability of our pre-trained classifier, we also collect another subset
from the test set of CELLS dataset [28], gathering 200 summary-abstract
pairs. Similar to PlainFact (§3.1.1), we also conduct sentence-level per-
turbation for each plain language summary in our collected CELLS dataset.
Therefore, we have 200 factual and 200 non-factual summary-abstract pairs
for both PlainFact and CELLS datasets. We also compare PlainQAFact
on the FareBio dataset, which contains 175 plain language summaries gener-
ated by seven different LLMs, together with the source articles [47]. Specifi-
cally, FareBio includes 25 full scientific article examples, each source article
is summarized by seven LLMs, resulting 175 plain language summaries in
total. We sample plain language sentences that are not both faithful and
factual as non-factual sentences, and the rest as factual sentences, resulting
in 33 and 174 summaries respectively. We also extract sentences that are la-
beled as not faithful but factual in their “factual hallucination” label, which
represents the plain language sentence that is not from the source article, but
still conveying factual information, resulting in 53 valid summaries in total.
These sentences are equal to our factual elaborative explanation sentences.
Note in FareBio dataset, there are no non-factual simplification sentences.
Therefore, we use the same set of non-factual sentences (33 sentences) for
main experiment (Table 5) and explanation-only (Figure 2) evaluation.

4.2. Experiment Settings
The classifier used in PlainQAFact is fine-tuned on PlainFact with a

batch size of 32 for 10 epochs. We apply early stopping during training based
on validation loss. The temperature is set to 0 for GPT-4o and 0.01 for Llama
3.1. The Llama 3.1 model used in AE also uses a temperature of 0.01. For
the QG model, we fine-tune BART-large with a batch size of 16, a learning
rate of 3e-5, and two training epochs. The maximum input length is set to
512 for all models in PlainQAFact. More details of prompts and model
hyper-parameters for GPT-4o and Llama 3.1 are provided in Appendix C
and Appendix D.

4.3. Existing Factuality Metrics
To the best of our knowledge, no prior work has efficiently evaluated

factuality metrics for detecting elaborative explanations in PLS tasks. More-
over, most factuality metrics are designed for general-domain applications,
largely due to limited quality and annotation of existing PLS datasets. To
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address this gap, we incorporate the following metrics in our experiment, in-
formed by prior work [9]: (1) Dependency-Arc Entailment (DAE) [48] is
an entailment-based method that evaluates summary factuality by breaking
it into smaller entailment tasks at the arc level. The model independently
determines whether each arc’s relationship is supported by the input. (2)
AlignScore [19] is a model-based factuality metric using RoBERTa [49]. It
extracts claims from the summary and calculates the alignment scores with
all the context chunks from the input document. The final score is an average
of all highest alignment probabilities. (3) SummaC [16] is an NLI-based in-
consistency detection method designed for summarization tasks. It segments
documents into sentences and aggregates scores between sentence pairs using
a trained NLI model. (4) QAFactEval [39] is a QA-based factuality eval-
uation metric that assesses summary consistency by generating questions
from the source document and comparing the model-generated answers with
expected answers. (5) QuestEval [50] is a reference-less evaluation metric
employs a T5 model to generate questions from the source document and
verifies whether the summary can correctly answer them.

5. Results and Analysis

We first conduct a pilot study on the FactPICO dataset [9] to investigate
the performance of existing factual consistency evaluation metrics on PLS
tasks. Our study (Appendix G) reveals two major limitations. First, many
LLM-generated plain language summaries in FactPICO contain incomplete
or incoherent sentences, highlighting the need for a benchmark based on
high-quality, human-authored plain language summaries. Second, existing
automatic factual consistency metrics are not sensitive to evaluate the factu-
ality of “added information”, underscoring the need for a more domain-related
factual consistency evaluation metric, especially for those summaries with
additional explanations that are not mentioned by the original source texts.
To address these challenges, we introduce a new expert-annotated dataset,
PlainFact, and propose PlainQAFact, a QA-based, retrieval-augmented
metric for evaluating factual consistency in plain language summaries.

In this section, we first benchmark PlainQAFact against five widely
used automatic factual consistency evaluation metrics on three PLS datasets
(§5.1). We then evaluate its performance in an explanation-only setting using
PlainFact (§5.2), followed by an ablation study to assess the contribution
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of each component (§5.3). Next, we conduct an error analysis to examine
failure cases and highlight directions for further improvement (§5.4).

Datasets Metrics Kendall’s τ Pearson AUC-ROC

CELLS

Llama 3.1 57.5 42.1 83.4
GPT-4o 70.0 75.4 99.3

QAFactEval 61.6 70.6 93.5
QuestEval 23.2 28.3 66.4*
SummaC 24.8 29.8 67.5*
AlignScore 56.0 66.2 89.6
DAE 14.4 14.4 55.0*
PlainQAFact 62.1 75.2 93.8

FareBio

Llama 3.1 40.5 38.9 83.0
GPT-4o 27.3 35.7 75.7

QAFactEval 32.8 43.9 81.6
QuestEval 37.8 45.2 86.4
SummaC 33.8 32.1 82.5
AlignScore 32.2 47.2 81.0
DAE 8.8 8.8 53.4
PlainQAFact 16.8 35.6 66.1

PlainFact

Llama 3.1 60.7 52.6 85.3
GPT-4o 69.8 80.3 99.2

QAFactEval 65.8 79.3 96.4
QuestEval 28.4 34.7 70.1*
SummaC 34.1 42.8 74.1*
AlignScore 60.2 72.6 92.5
DAE 5.3 5.3 51.8*
PlainQAFact 65.7 81.3 96.4

Table 2: Evaluation results of automatic metrics on the CELLS [28], PlainFact, and
FareBio [47] datasets. Results are evaluated using Kendall’s τ , Pearson correlation, and
AUC-ROC, with eight metric scores compared against human-labeled factuality. The
standard deviations (std.) over five runs are: 0.2 (PlainQAFact), 0.5 (Llama 3.1), and
6.0 (GPT-4o) on PlainFact; 0.1 (PlainQAFact), 0.2 (Llama 3.1), and 6.3 (GPT-4o) on
CELLS; and 0.1 (PlainQAFact), 2.9 (Llama 3.1), and 17.0 (GPT-4o) on FareBio. * in-
dicates an improvement of our metric over prior work with 95% confidence interval (details
in Appendix E). Note the plain language summaries in FareBio are generated
by seven LLMs, while CELLS and PlainFact are written by the authors of
original articles.
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5.1. Main Results
We report rank correlation (Kendall’s τ), linear correlation (Pearson), and

discrimination (AUC-ROC [51]) for three datasets (PlainFact, CELLS [28],
and FareBio [47]) following previous studies [16, 39, 49] in Table 5. Overall,
GPT-4o performs the best on CELLS and PlainFact, but its performance
drops on FareBio. DAE is consistently the weakest across all datasets and
metrics, suggesting that a dependency-only metric is insufficient for capturing
the factual consistency required in PLS tasks.

On CELLS, PlainQAFact outperforms all other automatic metrics on
all three criteria (Kendall’s τ=62.1, Pearson=75.2, AUC-ROC=93.8). This
shows that our approach, first detecting elaborative content and then verify-
ing it with retrieval, works better than existing QA-based metrics, which ask
all questions from the source only, and also better than NLI-based evalua-
tion metrics. Similarly, on PlainFact, PlainQAFact achieves the highest
Pearson (81.3), surpassing GPT-4o by 1.0 point. It ties AUC-ROC (96.4)
score with QAFactEval and has a competitive Kendall’s τ (65.7). These re-
sults on both datasets show that PlainQAFact is reliable for evaluating
both factual and non-factual plain language summaries.

On FareBio, no single method performs the best on all criteria. QuestEval
achieves the best AUC-ROC (86.4), AlignScore has the best Pearson (47.2),
while Llama 3.1 reaches the best Kendall’s τ (40.5). However, FareBio dif-
fers from the other two datasets in several ways: (1) the original labels in
FareBio are defined at the sentence level, and a summary is marked as non-
factual if any sentence is non-factual; (2) their summaries are generated from
full scientific articles rather than abstracts, making it harder for metrics to
locate matching source text; (3) the dataset is imbalanced (33 non-factual vs.
174 factual); and (4) All plain language summaries are generated by LLMs
and no elaborative explanation annotations are provided for each sentence or
summary. These factors likely increase evaluation difficulty on FareBio and
impact the performance of multiple metrics, including PlainQAFact and
GPT-4o.

In summary, PlainQAFact is a more consistent and effective metric for
factual consistency compared to existing automatic approaches. It clearly im-
proves over prior QA-based metrics on CELLS and matches or exceeds them
on PlainFact. Although GPT-4o performs better in most of the settings,
our PlainQAFact is built entirely on the open-source LLM (i.e., Llama
3.1), ensuring transparency, reproducibility, and accessibility. Its two-step
evaluation process, detecting explanations and verifying them with retrieval,
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helps align metric scores more closely with human judgments in PLS evalu-
ation tasks.

Figure 2: Overall performance on human-annotated elaborative explanation summaries
from PlainFact (392 summaries). The std. of PlainQAFact, Llama 3.1, and GPT-4o
are 0.1, 1.0, and 7.7, respectively based on five runs for each metric. * indicates an improve-
ment of our metric over prior work with 95% confidence interval (details in Appendix E).
PlainQAFact significantly outperforms most of the automatic factual consistency eval-
uation metrics in AUC-ROC. Note that the CELLS dataset does not contain annotations
for elaborative explanations. Results of explanation-only evaluation on FactPICO and
FareBio are reported in Appendix F.

5.2. Explanation-Only Evaluation
To test whether existing evaluation metrics are limited in assessing elabo-

rative explanations in PLS, we evaluate PlainQAFact on human-annotated
explanation-only summaries from PlainFact. We select only the sentences
labeled as “elaborative explanation” and group them into plain language sum-
maries, resulting in 392 summary–abstract pairs for PlainFact. Note that
CELLS does not provide sentence-level annotations for elaborative explana-
tions, so we evaluate it only as a general PLS dataset (§5.1).

As shown in Figure 2, PlainQAFact outperforms all existing automatic
metrics across all three criteria. It is 5.7 points higher in Kendall’s τ , 7.5
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points higher in Pearson, and 4.0 points higher in AUC-ROC compared with
the second-best metric, QAFactEval. These results indicate that Plain-
QAFact captures the factual consistency of elaborative explanations more
effectively than prior automatic metrics. While GPT-4o achieves higher over-
all scores (Kendall’s τ=54.9, Pearson=60.7, AUC-ROC=88.7), it shows much
higher variance (std. 7.7) compared to PlainQAFact (std. 0.1), making it
less stable for factual consistency evaluation.

Compared to the results in Table 5, AlignScore is competitive on general
PLS tasks but drops on evaluating explanation-only sentences. In contrast,
PlainQAFact remains consistently strong when we isolate explanation-only
content. PlainQAFact detects added elaborative explanations and checks
them with domain knowledge retrieval, which helps when factual consistency
depends on facts beyond simple restatement from the source. Since 44%
of sentences in our curated benchmark are labeled as elaborative by human
annotators, we believe that PlainQAFact is the more suitable and robust
factual consistency evaluation metric in this scenario. PlainQAFact also
outperforms Llama 3.1 on all three criteria (27.9/28.3/67.0), showing that
instruction-tuned LLM judges alone are not enough for reliable evaluation of
elaborative content.

5.3. Ablation Study
PlainQAFact consists of several modules, including a fine-tuned clas-

sifier, QA modules, a retrieval function, and an answer overlap evaluation
process. To understand the contribution of each component, we conduct an
ablation study on PlainFact (§5.3). Table 5.2 summarizes the ablation
results, where each component of PlainQAFact is individually modified to
measure its impact on overall performance.
Fine-tuned Classifier Table 5.2 shows that removing the classifier and re-
trieving for every sentence does not improve factual consistency assessment.
Performance drops across all criteria (Kendall’s τ from 65.7 to 61.2; Pearson
from 81.3 to 74.2; AUC-ROC from 96.4 to 93.2), and the std. increases to 0.7.
This approach also requires notably more computation. Using GPT-4o as a
simple classifier provides reasonable results but still underperforms compared
to our fine-tuned classifier. These findings support the use of a lightweight
fine-tuned classifier to trigger retrieval only when necessary.
Answer Extraction For extracting gold answers from plain language sum-
maries, the LLM-based extractors are better than PromptRank [40]. GPT-4o
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Component Method Choice Kendall’s τ Pearson AUC std.

PlainQAFact 65.7 81.3 96.4 0.2

Classifier
Fine-tuned classifier - - - -
GPT-4o 62.8 77.1 94.3* 0.1
No (retrieve for all) 61.2 74.2 93.2* 0.7

Answer Extraction
Llama 3.1 - - - -
GPT-4o 66.9 81.9 97.2 0.6
PromptRank 66.3 80.2 96.0 -

Retrieval Source
Abs + TB + SP - - - -
TB + SP 63.4 76.8 94.8 0.1
Abs (no retrieval) 62.8 77.1 94.3* 0.1

Answer Overlap BERTScore - - - -
LERC 64.5 75.9 95.5 0.1

Granular Level Sentence - - - -
Summary 49.3 59.6 84.7* 0.5

Table 3: Ablation study of PlainQAFact on PlainFact, analyzing the impact of in-
dividual components in PlainQAFact. Abs: abstract; TB: Textbooks; SP: StatPearls.
AUC represents AUC-ROC. The first row of each component setting represents our best
combination. * indicates an improvement of our metric over prior work with 95% confi-
dence interval. We run each setting for five times and report the standard deviation (std.).
Note that only the settings using LLMs may produce fluctuated scores.

achieves the best overall scores (Kendall’s τ=66.9, Pearson=81.9, AUC-
ROC=97.2), with small gains over our Llama-based method. PromptRank
performs better on Kendall’s τ (increases 0.6), but fails on other two criteria
compared to our best combination. Although GPT-4o achieves slightly higher
performance, the marginal gain does not justify the increased cost, making
Llama 3.1 a more practical and cost-effective choice for large-scale factual
consistency evaluation.
Combined Domain Resources for Retrieval The highest performance is
achieved when combining all three sources (Abs + TB + SP). This suggests
that comprehensive retrieval, which includes the original source abstracts,
improves overall factual consistency assessment. Compared to using only
external sources (TB + SP), performance drops by 2.3/4.5/1.6 across the
three criteria. Using only abstracts (i.e., no elaborative retrieval) also lowers
performance (2.9/4.2/2.1). To further examine the effectiveness of retrieval
for source simplification and elaborative explanation, Table 5.3 breaks down
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Component Method Choice Kendall’s τ Pearson AUC std.

Source Simplification Abs 63.5 79.0 94.8 0.2

Elaborative Explanation

Abs 32.8 38.2 72.8* 0.2
TB 31.2 37.2 70.6* 0.1
SP 33.3 37.8 72.5 1.7
TB + SP 36.7 42.0 75.4 0.1
Abs + TB 40.3 47.0 78.2 0.2
Abs + SP 40.5 47.4 78.3 0.2
Abs + TB + SP 44.2 51.3 81.0 0.1

Full Dataset

Abs 62.8 77.1 94.3* 0.1
TB 60.8 73.8 93.0* 0.1
SP 61.3 74.2 93.3* 0.1
TB + SP 63.4 76.8 94.8 0.1
Abs + TB 64.3 79.7 95.4 0.2
Abs + SP 65.0 80.3 95.9 0.2
Abs + TB + SP 65.7 81.3 96.4 0.2

Table 4: Ablation study results on the PlainFact, evaluating how different retrieval
sources affect various information types using PlainQAFact. The fine-tuned classi-
fier categorizes input sentences as source simplification or elaborative explanation.
Overall, the numbers of factual summaries that only include source simplification and elab-
orative explanation sentences are 198 and 191 respectively, and 198 and 194 for non-factual
summaries. Abs: abstracts; TB: Textbooks; SP: StatPearls. AUC represents AUC-ROC.
* indicates an improvement of Abs + TB + SP over other settings with 95% confidence
interval. We run each setting for five times and report the standard deviation (std.) in
the brackets.

the results as follows:
(1) Source simplification: These are sentences in plain language sum-

maries classified as “source simplification.” We evaluate summaries con-
taining only simplification sentences, using abstracts as the source. Using
abstracts as sole source texts achieves strong performance (63.5/79.0/94.8)
across all three criteria.

(2) Elaborative explanation: For summaries containing only explanation
sentences, abstracts alone are not sufficient (32.8/38.2/72.8), performing
much worse than in simplification cases. Adding abstracts with external
sources improves performance, with the best results obtained by combining
all three sources (Abs + TB + SP).

(3)Full dataset : Retrieval from StatPearls provides better results than
retrieval from Textbooks, highlighting the importance of using high-quality,
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domain-specific knowledge bases for PLS evaluation. Overall, the best com-
bination across all settings is Abs + TB + SP (65.7/81.3/96.4).

These findings show that effective retrieval for factual consistency should
include both the source abstract and reliable external medical references,
especially when summaries contain elaborative explanations.
Answer Overlap Evaluation BERTScore outperforms the LERC approach
introduced in QAFactEval [21], with gains of 1.2/5.4/0.9 across the three
evaluation criteria. This performance gap can be attributed to the funda-
mental differences between the two metrics. LERC is a learned model trained
to predict human factual consistency scores, which may reduce its generaliz-
ability to new domains or sentence types. In contrast, BERTScore computes
embedding-based semantic similarity, allowing it to capture fine-grained se-
mantic overlap between generated and gold answers. Since PlainQAFact
evaluates factual consistency by comparing model-generated answers to those
extracted from the source, BERTScore’s sensitivity to semantic alignment
makes it a more effective and robust choice for this step of the evaluation.
Sentence-level vs. Summary-level Evaluation To further examine the
effect of input granularity in factual consistency evaluation, we deactivate
the sentence-splitting function and instead pair each plain language sum-
mary with an abstract to evaluate factual consistency at the summary level.
Our best sentence-level evaluation achieves an AUC-ROC of 96.4, while the
summary-level setting performs worse across all three criteria (Kendall’s τ=49.3,
Pearson=59.6, AUC-ROC=84.7; std. 0.5). Evaluating at the summary level
introduces broader contextual dependencies, which can omit sentence-specific
factual errors or create inaccurate entailments. These results suggest that
processing one sentence at a time makes QA-based question generation and
answering more focused and reduces noise from unrelated context.

5.4. Error Analysis
To analyze cases where PlainQAFact fails on the PlainFact bench-

mark, we categorize one correct example and three types of errors in Ta-
ble 5.3. For each case, we present the original plain language sentence,
the corresponding scientific abstract with retrieved knowledge (from med-
ical textbooks and StatPearls), the model-generated questions based on ex-
tracted answers, and the QA model’s final responses. Each question is gen-
erated based on the extracted answer and its corresponding plain language
sentence.
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Plain Language Sentence: Limits to the availability of SSB in schools (e.g. replacing SSBs with
water in school cafeterias). [52]
Scientific Abstract: Frequent consumption of excess amounts of sugar-sweetened beverages (SSB)
is a risk factor for obesity, type 2 diabetes, cardiovascular disease and dental caries... [52]
Generated Question: Limits to the availability of what in schools?
Retrieved Knowledge: Even though additional data is required to determine the impact of limiting
the availability of nutrient-poor or high-sugar goods in schools on obesity, some study results have
shown a net-positive result...
Final Answer: nutrient-poor or high-sugar goods

M
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ti
on

Plain Language Sentence: This review looked at how well the methods worked to prevent preg-
nancy, if they caused bleeding problems, if women used them as prescribed, and how safe they were.
[53]
Scientific Abstract: To compare the contraceptive effectiveness, cycle control, compliance (adher-
ence), and safety of the contraceptive patch or the vaginal ring versus combination oral contraceptives
(COCs)... [53]
Generated Question: This review looked at how well the methods worked to prevent what?
Retrieved Knowledge: Appropriate treatment for the underlying etiology should start as soon as
possible, and the patients and family members should receive appropriately targeted education...
Final Answer: cycle control
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Plain Language Sentence: The patch is a small, thin, adhesive square that is applied to the skin.
[53]
Scientific Abstract: Users of the norelgestromin-containing patch reported more breast discom-
fort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel-containing patch trial, patch users
reported less vomiting, headaches, and fatigue...[53]
Generated Question: The patch is a small, thin, what kind of square applied to the skin?
Retrieved Knowledge: Nonstick dressing Petrolatum-infused gauze strip or other material to form
a bolster over the graft site. This may be sutured or taped securely in place to provide some pressure
and to keep graft immobilized.
Final Answer: Nonstick dressing Petrolatum-infused gauze strip
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Plain Language Sentence: Government officials, business people and health professionals imple-
menting such measures should work together with researchers to find out more about their effects in
the short and long term. [52]
Scientific Abstract: To assess the effects of environmental interventions (excluding taxation) on
the consumption of sugar-sweetened beverages and sugar-sweetened milk, diet-related anthropo-
metric measures and health outcomes, and on any reported unintended consequences or adverse
outcomes...[52]
Generated Question: What officials, business people and health professionals implementing such
measures should work together with researchers to find out more about their effects in the short and
long term?
Retrieved Knowledge: Implementation should be accompanied by high-quality evaluations using
appropriate study designs, with a particular focus on the long-ter effects of approaches suitable for
large-scale implementation.
Final Answer: long-ter effects

Table 5: Error analysis of PlainQAFact with intermediate metric outputs. “Retrieved
Knowledge” refers to the source texts retrieved for each plain language sentence. We
present correct and failure cases sampled only from elaborative explanation examples (i.e.,
sentences classified as explanations during evaluation). The correct case has a Plain-
QAFact score above 0.6, while the failure cases have scores below 0.5.
Color legend: extracted answer, answer origin, correct answer, incorrect answer.
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In the correct case, the QG model generates a question from the plain
language sentence and the extracted answer “SSB.” The QA model then
provides the correct answer using the retrieved knowledge rather than the
original abstract, demonstrating PlainQAFact ’s effectiveness in evaluating
explanation sentences.

In the first failure case, the extracted answer is “pregnancy,” but the QA
model returns “cycle control” from the abstract because the correct term is
missing in the retrieved content. Since this sentence is classified as an “elab-
orative explanation,” which requires external knowledge for verification, this
error points to a potential misclassification between simplification and expla-
nation by the fine-tuned classifier. The second failure illustrates how noisy
retrieved knowledge can impair evaluation. The QA model provides an irrel-
evant answer from the retrieved content that does not match the extracted
gold answer. The third case shows an unanswerable question generated by the
QG model (e.g., regarding “Government”), highlighting a limitation of QA-
based factual consistency evaluation. Some questions remain unanswered
even with retrieval. Additionally, we acknowledge that some plain language
sentences may not generate any questions, resulting in empty question sets.
Addressing these challenges requires further improvements in classification,
retrieval, and domain-specific question generation.

6. Discussion and Conclusion

Our study advances the assessment of hallucinations in the field of PLS
by supplying both the first domain expert-annotated biomedical PLS bench-
mark PlainFact and a novel retrieval-augmented QA-based factual consis-
tency evaluation metric PlainQAFact. Unlike existing biomedical domain
corpora that either lack fine-grained labels for elaborative content [54] or
focus solely on text simplification (e.g., FactPICO[9]), PlainFact captures
sentence-level distinctions, including simplification versus explanation, func-
tional roles, and explicit alignment to source sentences. This granularity not
only enables precise error analysis of hallucinations introduced for clarity, but
also provides a reusable framework for researchers in other disciplines (e.g.,
legal, technical) to replicate our annotation protocol and build high-quality
factual consistency datasets tailored to their specialized texts. By offering
these data and detailed annotation protocol (Appendix A), we anticipate
community-driven extensions, such as multilingual adaptations or integra-
tion with domain-specific ontologies that will democratize development of
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trustworthy summarization models.
Building on this resource, PlainQAFact differentiates from prior QA-

based metrics (e.g., QAFactEval[21], QuestEval[50]) by first classifying whether
a sentence requires external verification given elaborative explanations are of-
ten ignored by metrics relying solely on source text, and improve the evalua-
tion efficiency without retrieving for every plain language summary instance.
Then, retrieving targeted domain knowledge for each elaborative explanation
before posing and answering fact-checking questions. The ablations demon-
strate that selective retrieval yields substantial gains in Kendall’s τ , Pear-
son correlation, and AUC-ROC over both end-to-end LLM judges[41] and
alignment-based scorers[19], highlighting that judicious incorporation of ex-
ternal evidence is essential for robust factual consistency assessment. Beyond
its empirical strengths, PlainQAFact serves as a plug-and-play evaluation
metric for future summarization systems. Developers can leverage our classi-
fier to classify sentences, apply retrieval only where necessary, thus contain-
ing computational costs and obtain interpretable question–answer pairs that
manifest non-factual hallucinations. More importantly, PlainQAFact is
developed with the open-source backbone model (i.e., Llama 3.1), ensuring
broad use with transparency, reproducibility, and fewer computational costs.
Looking forward, extending our proposed evaluation method to interactive
human–AI workflows, where clinicians or subject-matter experts verify QA
outputs on-the-fly, could further enhance trust and adoption in high-stakes
domains, including medicine, healthcare, or law.

Despite these promising results, we consider the following limitations of
this study. (1) Our error analysis reveals that misclassifications, particularly
between source simplifications and elaborative explanations, can lead to re-
trieval mismatches and unanswerable QA prompts. These issues underscore
the need for more nuanced classification and question generation modules.
Although we provide substitute solutions for classifying input summaries or
sentences, our fine-tuned classifier is limited to the biomedical domain and
specifically designed for PLS tasks, fine-tuned through PlainFact. We ac-
knowledge that the dataset used for model fine-tuning is insufficient, resulting
in only moderate classification accuracy. Given the scarcity of high-quality
human-annotated data for classifying source simplification and elaborative
explanation information, future efforts are needed on developing domain-
specific (e.g., law, healthcare, social science, etc.) classifiers [55] for factual
consistency evaluation. (2) While our experiments indicate that our retrieval-
augmented evaluation metric can improve factual consistency assessment in
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most of the settings, especially in elaborative explanation evaluation, the
computational time increases compared to NLI-based evaluation metrics and
LLM-based evaluators. The trade-off between evaluation precision and effi-
ciency suggests that further optimization will be beneficial. We suggest to
balance wisely based on the trade-offs we report in this study regarding the
evaluation time and accuracy.
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Appendix A. Dataset Annotation Protocol

We developed a comprehensive annotation procedure for freelancers on
Upwork to conduct fact-checking annotations.

Our annotation procedure involves two stages, starting with thorough
training using detailed examples to ensure consistent understanding of the
task between annotators. Annotators receive a spreadsheet where each row
contains a pair of data: a sentence extracted from the plain language sum-
mary and its corresponding scientific abstract. For every sentence-abstract
pair, the annotators are required to label three features: External, Category,
and Relation, with the appropriate labels.

Step 1: Sentence Annotation: Compared to the scientific abstract, analyze
each sentence of the plain language summary across three dimensions: external
information, category, and relation.

1. External: Determine whether the sentence includes information does not
present in the scientific abstract.

1) Yes: The sentence contains external information that is not explicitly men-
tioned, paraphrased, or implied in the scientific abstract.

2) No: The sentence contains information that is explicitly stated or closely
paraphrased from the scientific abstract.

2. Category: Classify the sentence of the plain language summary into one of
the following categories (you can only choose one category per annotation)

1) Definition: Provides a fundamental explanation of a term.

2) Background: Information that helps understand the term within the con-
text of the abstract, such as relevance, significance, or motivation.

3) Example: Specific instances that illustrate the use of the term in the scien-
tific abstract.

4) Method/result: Details about the methodology or results described in the
scientific abstract.

5) Other: For sentences that do not fit into the categories above, please indi-
cate the category

3. Relation: Identify the sentence(s) in the scientific abstract that the sentence
of the plain language summary is related to. Use indices of sentences from the
scientific abstract to link the sentence of the plain language summary. You can
select one or more sentences from the scientific abstract. List the indices like
s1_1,s2_3,s3_6. If no relation is found, mark it as “external.”
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In Step 2, we provide explanations of the existing sentence-level indexes
for plain language sentences and scientific abstracts.

Step 2: Using the Annotation Spreadsheet: You will work within a structured
spreadsheet containing the segmented sentences from both the summaries and
the scientific abstracts.

1. Target_Summary_ID: A unique identifier for each plain language
summary. Sentences from the same plain language summary share the same ID.

2. Target_Sentence_Index: An identifier for each sentence within a summary,
forming as tx_y, where ‘tx’ is the same as its ‘Target_Summary_ID’, and ‘y’
represents the index of each sentence in the plain language summary, starting
from 1. e.g., t0_1 refers to the first sentence of the first summary)

3. Target_Sentence: The plain language sentence you are annotating.

4. Original_Abstract: The abstract corresponding to each summary, with each
sentence indexed for easy reference.

Each annotator will annotate 40 summary-abstract pairs to ensure each
sentence of the plain language summary has two sets of annotations from
different people. For each row of the spreadsheet, they need to annotate
three columns: “External,” “Category,” and “Relation.”

<TO BE ANNOTATED> External: Mark “Yes” or “No” to indicate if the
sentence in the ‘Target_Sentence’ column contains external information.

<TO BE ANNOTATED> Category: Choose the most fitting category of the
sentence from the list (Definition, Background, Example, Method/Result, Other).

<TO BE ANNOTATED> Relation: List the relevant sentence indices from the
abstract in the ‘Original_Abstract’ column that relate to the plain language sen-
tence (e.g., s10_1,s10_5). For example, filling in ‘s10_1,s10_5,s10_9’ if you think
these three sentences from the abstract are relevant to sentence t1_3. Use commas
to separate multiple indices.

To ensure annotators fully understand the context and task requirements,
we provide comprehensive annotation training and a screening test prior
to the annotation process. We select candidates from freelancers with a
medical education background, and only those who pass the screening test
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are finalized as annotators.

Feature Annotation

E
xa

m
p
le

1

Plain Language Sentence Gout caused by crystal formation in the joints due to high uric acid
levels in the blood.

Need External Information? yes

Category Background

Relation external

Corresponding Abstract None

E
xa

m
p
le

2

Plain Language Sentence Reducing blood pressure with drugs has been a strategy used in patients
suffering from an acute event in the heart or in the brain, such as heart
attack or stroke.

Need External Information? yes

Category Background

Relation s10_1,s10_2

Corresponding Abstract <s10_1>Acute cardiovascular events represent a therapeutic challenge.
<s10_2>Blood pressure lowering drugs are commonly used and recom-
mended in the early phase of these settings.
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3

Plain Language Sentence We looked at whether choice of antibiotic made a difference in the num-
ber of people who experienced failed treatment, and we determined the
proportions who had resolution of fever at 48 hours.

Need External Information? no

Category Method/Result

Relation s15_16,s15_17,s15_20

Corresponding Abstract <s15_16>For treatment failure, the difference between doxycy-
cline and tetracycline is uncertain (very low-certainty evidence).
<s15_17>Doxycycline compared to tetracycline may make little or no
difference in resolution of fever within 48 hours (risk ratio (RR) 1.14,
95% confidence interval (CI) 0.90 to 1.44, 55 participants; one trial; low-
certainty evidence) and in time to defervescence (116 participants; one
trial; low-certainty evidence). <s15_20>For most outcomes, including
treatment failure, resolution of fever within 48 hours, time to defer-
vescence, and serious adverse events, we are uncertain whether study
results show a difference between doxycycline and macrolides (very low-
certainty evidence).

Table A.6: Examples of our curated dataset. Need External Information feature repre-
sents whether a plain language sentence is a simplification or an explanation. A label
of “yes” indicates that the sentence is an explanation and requires additional elaborative
information beyond the source abstract to verify its factual consistency. Conversely, a
label of “no” shows that the sentence is a simplification that can be validated using only
the source abstract.
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Appendix B. Dataset Examples

In Table Appendix A, we presents three representative examples from
PlainFact. Each example is annotated with five features: a plain language
sentence, an indicator of whether the sentence is simplification or expla-
nation, its category, its relation, and the corresponding abstract. All plain
language sentences are factual, as they were written by the authors from the
Cochrane database. “Need External Information?” feature specifies whether
a sentence can be validated solely by the abstract. A “Yes” label indicates
that the sentence includes information not explicitly mentioned in the ab-
stract, and vice versa. The “Relation” feature identifies the sentence(s) in
the scientific abstract most relevant to the plain language summaries; if no
corresponding content exists in the abstract, the relation is marked as “exter-
nal.” We randomly sample three examples from the dataset to to illustrate
the dataset’s structure. Additionally, indexes have been created for both the
plain language sentences and the abstract sentences to facilitate annotation.

Appendix C. LLM Prompts

We utilize two types of prompts to guide LLMs through two stages of
FC evaluation: classification and answer extraction. In accordance with the
benchmark annotation protocol (Appendix A), we employ GPT-4o as a clas-
sifier to determine whether a given sentence or summary requires elaborative
explanations for factual verification. For both stages, we set the max_tokens
parameter to 512 and configure the temperature to 0 for GPT-4o and 0.01 for
the Llama 3.1 8B Instruc model.

Developer
Annotate whether a sentence or summary includes information not present in the original
abstract.

The sentence or summary contains external information that is not explicitly mentioned,
paraphrased, or implied in the original abstract will be labeled as ’Yes’.

The sentence or summary contains information that is explicitly stated or closely
paraphrased from the original abstract will be labeled as ’No’.

User
Sentence or summary: <input>
Original abstract: <abstract>

Example 1: Prompt of GPT-4o as the Classifier.
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For the AE stage, we explore both GPT-4o and Llama 3.1 8B Instruct
as backbone models to assess the FC evaluation performance of Plain-
QAFact. Following the task description outlined in QAFactEval [39], we
instruct both LLMs to extract potential answer entities from the input PLS.

Developer
QA-based metrics compare information units between the summary and source, so it is thus
necessary to first extract such units, or answers, from the given summary. Please extract
answers or information units from a plain language summary.

User
Extract a comma-separated list of the most important keywords from the following text:
<input>

Example 2: Prompt of GPT-4o as the Answer Extractor.

System
QA-based metrics compare information units between the summary and source, so it is thus
necessary to first extract such units, or answers, from the given summary. Please extract
answers or information units from a plain language summary.

User
Extract a comma-separated list of the most important keywords from the following text:
<input>

Example 3: Prompt of Llama 3.1 8B Instruct as the Answer Extractor.

Additionally, we report the performance of using Llama 3.1 8B Instruct
as a judge to evaluate the FC of a given PLS based on its source scientific
abstract.

System
Rate the factuality of the given plain language sentence or summary compared with the
scientific abstract. Output a numeric score from 0 to 100, with 100 meaning the sentence is
completely factually consistent with the abstract and 0 meaning the sentence is completely
non-factual with the abstract.

User
Sentence or summary: <input>
Original abstract: <abstract>
Factuality score (only output a numeric score): <score>

Example 4: Prompt of Llama 3.1 8B Instruct as a FC judge.

For the LLM-based perturbation of PlainFact and CELLS datasets, we
follow the protocol of APPLS [12] on faithfulness criteria.

System
You are a data transformation assistant. You will receive a sentence from a biomedical
literature. You will generate a new version of the given sentence based on the following
rules for faithfulness perturbations:
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1. Number Swap
Locate any numeric value(s) in the sentence and swap them with different numeric value(s).
Example: "infected more than 59 million people" -> "infected more than 64 million people"

2. Entity Swap
Locate a key entity (e.g., virus name, drug name, organization) in the sentence and swap it
with a different entity.

Example: "coronavirus 2 (SARS-CoV-2)" -> "canine adenovirus (CAV-2)"

3. Synonym Verb Swap
Identify a key verb in the sentence and replace it with a near-synonym or related verb that
changes the nuance or meaning slightly.

Example: "killed more than one of them" -> "stamped out more than one of them"

4. Hypernym/Antonym Swap
Select a word and replace it with either a hypernym (a more general term) or an antonym (
opposite meaning), as appropriate.
Example (antonym): "killed more than one of them" -> "saved more than one of them"
Example (hypernym): "dog" -> "animal" (if relevant)

5. Negation
Negate a key part of the sentence to flip its meaning.
Example: "has infected more than 59 million people" -> "hasn’t infected more than 59
million people" or "has not infected more than 59 million people"

Your task:
Read each sentence, generate a new sentence based on one of the five types of perturbation
stratigies (Number Swap, Entity Swap, Synonym Verb Swap, Hypernym/Antonym Swap, Negation)
above.
Return the perturbation sentence.

Do not change the rest parts of the sentence except for the perturbation content. For
example, the original sentence is "The skin patch and the vaginal (birth canal) ring are
two methods of birth control." The perturbation sentence should be "The skin patch and the
vaginal (birth canal) ring are five methods of birth control."

User
Sentence: <input>
Perturbation sentence: <sentence>

Example 5: Prompt of GPT-4o for faithfulness perturbation

Appendix D. Detailed Experiment Settings

All experiments we conduct are under one NVIDIA A100 GPU with 40
GB GPU memory. We employ the Natural Language Toolkit (NLTK)5 to
split the plain language summaries into sentences using the punkt package.
For the classifier fine-tuning, we set the random seed to 42 to split Plain-
Fact into training, validation, and test sets. We tune the PubMedBERT-base

5https://www.nltk.org/
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model for three epochs with early stopping under the validation set. The
final fine-tuning accuracy of the classifier on the test set is 0.77. The same
seed (42) is also used to sample 200 summary-abstract pairs from the CELLS
test set for the comparison in Table 5.

The QA model used in our PlainQAFact is downloaded from QAFactE-
val [39]. However, we set its maximum input length to 512 (from 364) tokens
to incorporate more source context. Similarly, to ensure that the answers
extracted during the AE stage are valid (i.e., within the 512-token limit
to maintain consistency with the subsequent QA model), we configure the
LLMs’ input lengths to 512 tokens. In MedCPT retrieval, we set k (the num-
ber of retrieved snippets) to 3, ensuring the retrieved information remains
within a short context window for the subsequent QA process (Appendix D).

We apply the default setting (i.e., RoBERTa-base) for AlignScore [19] and
SummaC-Conv for SummaC [16]. For GPT-4o experiments as an factual
consistency evaluator, we set the temperature as 1.0 in this paper.

Appendix E. Statistical Testing

Following SummaC [16] and QAFactEval [39], we test whether our pro-
posed metric achieves statistically significant improvements over other meth-
ods. Given Kendall’s τ and Pearson correlations do not show the discrim-
inative feature of continuous scores in various evaluation metric, we run a
systematic evaluation on four datasets (CELLS, FareBio, FactPICO, and
PlainFact) through bootstrap resampling [56] on the AUC-ROC results.
We compare our best metric to other methods using the confidence intervals
as significance level of 0.05 and apply Bonferroni correction [57] following
SummaC [16]. Our results show that PlainQAFact achieves statistically
significant improvements over QuestEval [50], SummaC [16], and DAE [48]
on the CELLS and PlainFact datasets. As shown in Figure 2, Plain-
QAFact also outperforms other automatic metrics in evaluating elaborative
explanation sentences, except for QAFactEval [39]. This highlights the effec-
tiveness of PlainQAFact for biomedical PLS tasks that include external
explanations. On the other hand, when evaluating elaborative content in the
FactPICO and FareBIO datasets (Figures E.3 and E.4), we do not find sta-
tistically significant differences across metrics. While some existing metrics
perform similarly in certain settings, our metric consistently shows better
performance across all three evaluation criteria.
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Figure E.3: Overall performance on summaries containing added information (i.e., elab-
orative explanations) from FactPICO [9]. The std. of PlainQAFact, Llama 3.1, and
GPT-4o are 0.2, 0.2, and 3.3, respectively, based on five runs of each metric (details in
Appendix E).

Appendix F. Summary-Level Explanation-Only Evaluation

Similar to our sentence-level explanation annotations in PlainFact,
FactPICO [9] and FareBio [47] datasets also provide human-annotated ex-
planation information in plain language summaries. According to the results
shown in Section 5.2, we also assess the performance of five factual consis-
tency evaluation metrics under FactPICO and FareBio datasets.

In the FactPICO, the elaborative explanation is defined as “added infor-
mation.” We first select summaries that include added information, and
then we label a summary as “non-factual” if it contains any non-factual
added information as determined by annotators. We generate a summary-
level explanation-only FactPICO dataset consisting of 231 summary-abstract
pairs. As shown in Figure E.3, AlignScore achieves the best performance
across all three evaluation criteria. However, since the summaries in the Fact-
PICO dataset are generated using LLMs, the factual consistency between the
generated summaries and the original source abstracts is not guaranteed. For
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Figure E.4: Overall performance on summaries with elaborative explanations from Fare-
Bio [47]. The std. for PlainQAFact, Llama 3.1, and GPT-4o are 0.03, 0.3, and 5.7,
respectively, computed over five runs (details in Appendix E.)

instance, we treat a summary as “factual” indicates that all the added infor-
mation is factual, but it does not necessarily reflect the factual consistency
of other content. Therefore, the results presented in Figure E.3 may become
biased.

For FareBio [47], we collect explanation sentences based on both “faith-
fulness” and “factual hallucination” labels in the original dataset. As shown
in Figure E.4, PlainQAFact achieves the best performance compared with
all other metrics, showing a clear advantage over GPT-4o. Since the FareBio
dataset provides sentence-level annotations of factual consistency for each
sentence in the plain language summaries, the results are more reliable than
those from FactPICO.

Appendix G. Pilot Study on FactPICO

To investigate the performance of existing automatic factual consistency
evaluation metrics on plain language generation tasks, we employ the recently
introduced FactPICO dataset [9]. This dataset comprises human-labeled
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plain language summaries of Randomized Controlled Trials (RCTs) that
address several critical elements: Populations, Interventions, Comparators,
Outcomes (PICO), and additional information. All summaries are generated
by various LLMs based on medical literature and include added information
(i.e., extensive explanations) not present in the original abstracts. We hy-
pothesize that existing factuality evaluation metrics for text summarization
may struggle to accurately assess the factuality of this added information.
To validate this assumption, we conduct pilot studies using four factual con-
sistency evaluation metrics from FactPICO alongside one NLI-based metric:
DAE [48], AlignScore [19], SummaC [16], QAFactEval [39], and QuestEval
[50].

Appendix G.1. Dataset Pre-processing
FactPICO provides span-level annotations for LLM-generated summaries,

assessing whether the additional information is present and determining its
factuality, labeled as either “yes” or “no.” We first remove all special iden-
tification tags from the abstracts, such as “ABSTRACT.BACKGROUND,”
“ABSTRACT.RESULTS,” and “ABSTRACT.CONCLUSIONS.” We then dedu-
plicate the generated summaries, while retaining duplicates within abstracts,
as each abstract has three summaries generated by different LLMs, and each
abstract may have varying numbers of generated summaries, from none to
multiple. This pilot study focuses on two key research questions: evaluating
the effectiveness of existing factuality metrics in assessing added information
and non-factual added information.

Appendix G.2. Experiments and Results
We conduct experiments using the processed FactPICO dataset to con-

duct pilot studies that assess the performance of existing factual consistency
evaluation metrics in detecting added information in plain language sum-
marization tasks. It is important to note that some outliers in the plain
language summaries of the FactPICO dataset contain extraneous content,
which causes the input lengths to exceed the limitations of both the DAE
and QAFactEval metrics. Furthermore, the factuality of the LLM-generated
plain language summaries is not guaranteed.

RQ1: Do existing metrics perform well when external informa-
tion is added to plain language summaries compared with no added
information?
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Figure G.5: Score change percentage from baselines over five metrics on the FactPICO
dataset in removing factual added information. We expect each metric stays unchanged
even when more added factual information is removed. The evaluation dataset contains
88 valid summary-abstract pairs.

In this study, we evaluate the ability of existing factual consistency eval-
uation metrics to detect added information in plain language summaries.
We focus on summaries where all added information is annotated as factual,
resulting in a dataset of 88 summary-abstract pairs. To assess metric sensi-
tivity to the added information, we iteratively remove sentences from each
plain language summary that contain added spans. For example, if a span
such as “of a medicine called haloperidol” is labeled as factual (“yes”), we re-
move the entire sentence in the original plain language summaries containing
that span through exact matching, continuing this process until no added
information remains. This procedure enables us to determine how effectively
current metrics handle added information that is absent from the original
abstracts. As shown in Figure G.5, we report performance changes relative
to baseline scores. For example, the AlignScore evaluation increases by 3.3%
(on a 100-point scale) when six spans of added information are removed,
resulting in an overall change of approximately 4.9% compared to the set-
ting in which no added information is removed. These findings indicate that
added information affects model-based factuality evaluation metrics such as
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Figure G.6: Score change percentage from baselines over five metrics on the FactPICO
dataset in removing non-factual added information (60 pairs). We expect the change
percentage from baseline increases when more added non-factual information is removed.

QAFactEval (6.0%), AlignScore (4.9%), and SummaC (1.9%), with scores
improving as more added information is removed. In contrast, both QuestE-
val and DAE scores decline with the removal of added information, and
notably, DAE exhibits the most significant performance drop. Overall, these
findings suggest that all the five metrics have difficulty accurately assessing
added factual information, as evidenced by both increases and decreases in
their performance.

RQ2: Can existing metrics distinguish between non-factual and
factual added information?

In this research question, our goal is to evaluate the sensitivity of fac-
tuality evaluation metrics in detecting non-factual information within plain
language summaries. The FactPICO dataset labels added information as ei-
ther “yes” (factual) or “no” (non-factual). In this scenario, we sample only
those plain language summaries that contain both “yes” and “no” labels for
added spans. As with RQ1, we iteratively remove sentences containing non-
factual added spans from each plain language summary until no non-factual
sentences remain. Overall, as illustrated in Figure G.6, only AlignScore,
SummaC, and QAFactEval show improved performance as more non-factual
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information is removed, indicating that these metrics are sensitive in added
non-factual information. Nevertheless, based on the results of RQ 1 and 2,
our findings suggest that existing factual consistency evaluation metrics have
limited capacity to accurately distinguish between factual and non-factual
added information in plain language summarization tasks.
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