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Abstract

Personalizing jargon detection and explanation
is essential for making technical documents
accessible to readers with diverse disciplinary
backgrounds. However, tailoring models to in-
dividual users typically requires substantial an-
notation efforts and computational resources
due to user-specific finetuning. To address
this, we present a systematic study of person-
alized jargon detection, focusing on methods
that are both efficient and scalable for real-
world deployment. We explore two personaliza-
tion strategies: (1) lightweight finetuning using
Low-Rank Adaptation (LoRA) on open-source
models, and (2) personalized prompting, which
tailors model behavior at inference time with-
out retaining. To reflect realistic constraints,
we also investigate semi-supervised approaches
that combine limited annotated data with self-
supervised learning from users’ publications.
Our personalized LoRA model outperforms
GPT-4 with contextual prompting by 21.4% in
F1 score and exceeds the best performing ora-
cle baseline by 8.3%. Remarkably, our method
achieves comparable performance using only
10% of the annotated training data, demonstrat-
ing its practicality for resource-constrained set-
tings. Our study offers the first work to system-
atically explore efficient, low-resource person-
alization of jargon detection using open-source
language models, offering a practical path to-
ward scalable, user-adaptive NLP system !.

1 Introduction

Large Language Models (LLMs) are increasingly
used to support interdisciplinary research by help-
ing scholars navigate diverse and domain-specific
texts (Leto et al., 2024; Ramoneda et al., 2024;
Lu et al., 2024; Jiang et al., 2025). However, a
persistent barrier to effective interdisciplinary col-
laboration is the prevalence of domain-specific jar-
gon (Barnett and Doubleday, 2020; Strober, 2006).
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Researchers often struggle to interpret specialized
terminology outside their core expertise, leading
to miscommunication (Han et al., 2018; Choi and
Pak, 2007), impaired knowledge integration (Lucy
et al., 2023), and ultimately slow scientific dis-
covery (Glasziou et al., 2020; Daniel et al., 2022;
van Helden et al., 2024). While prior work has
developed NLP methods to identify and simplify
scholarly jargon using general-purpose corpora like
Wikipedia as proxies for reader knowledge (Gard-
ner and Davies, 2013; Tanaka-Ishii and Terada,
2011; Guo et al., 2022, 2021), these approaches
remain limited by their lack of personalization. A
researcher’s background significantly influences
their familiarity with domain-specific terms (Good-
ing and Tragut, 2022; Guo et al., 2024), suggesting
that individualized models could more effectively
determine which terms require explanation.

To address this challenge, we focus on the task
of personalized jargon identification: automatically
detecting domain-specific terms that may be unfa-
miliar to an individual researcher based on their
background. Our goal is to make interdisciplinary
content more accessible by leveraging LLMs in a
personalized, data-efficient, and scalable manner.

Recent efforts in personalized language models,
such as LaMP (Salemi et al., 2024), OPPU (Tan
et al., 2024b), and Per-Pcs (Tan et al., 2024a), have
shown promise by adapting models to user prefer-
ences via parameter-efficient fine-tuning (PEFT).
However, these methods often rely on costly su-
pervised data or explicit annotation, limiting gen-
eralizability. While systems like HLLM (Chen
et al., 2024) target personalization task, they do not
directly address the broader challenge of personal-
ized language understanding in scholarly context.

Guo et al. (2024) made the first step toward per-
sonalized jargon detection by releasing a bench-
mark and analyzing GPT-4’s capabilities. However,
their approach depends on costly prompting and
rich supervision, raising concerns about scalability
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Figure 1: To enable personalized jargon detection, we first fine tune a LoRA-based PEFT model using supervised,
self-supervised, and semi-supervised training strategies that reflect real world scenarios with varying levels of
annotation availability. Next, we enhance the contextual understanding of the target researcher through a range of
background aware prompting methods, including vanilla, metadata based, profile enhanced, nearest researcher, and
nearest abstract), to generate personalized familiarity predictions.

and generalization. In this paper, we provide the
first comprehensive and systematic study of per-
sonalized jargon detection with an emphasis on ef-
ficiency, scalability, and low-resource practicality.
We show that lightweight PEFT on open-source
models can surpass GPT-4 while requiring only
10% annotated data, highlighting the feasibility of
scalable, user-adaptive NLP systems.

2 Method

To personalize jargon familiarity, we investi-
gate three fine-tuning settings: supervised, self-
supervised, and semi-supervised ( §2.2), and incor-
porate contextual prompts ( §2.3). To isolate the
impact of personalization, we additionally evaluate
a leave-one-annotator-out setting ( §2.4).

2.1 Experimental Setup

We use the personalized jargon detection dataset
from Guo et al. (2024), which contains 11k term
familiarity (i.e., familiar or unfamiliar) annota-
tions provided by 11 computer science researchers
for terms extracted from 100 paper abstracts. To
our knowledge, it is the only interdisciplinary jar-
gon dataset with high-quality annotations, rich per-
sonal metadata, and accompanying published pa-
pers from the annotators. We follow the same data
split as Guo et al. (2024), dividing the dataset into
60/20/20 for the train, validation, and test sets. We
selected L1lama-3.1 8B Instruct 4bit (Dubey
et al., 2024) as our baseline model for personalized
jargon detection based on its strong instruction-

following ability, low mismatch rate, and competi-
tive performance in preliminary evaluations across
several state-of-the-art LLMs. We evaluate model
performance using the effective F-1 Score, which
adjusts for output format errors by penalizing pre-
dictions with a high mismatch rate. Details of hy-
perparameters are in App. §A.

2.2 Lightweight Personalized PEFT

To ensure consistency across different personaliza-
tion settings, we adopt the Alpaca format (Taori
et al., 2023), which is widely used in instruction
fine-tuning. Each training instance is structured
into three components: an Instruction, an Input
(target abstract and term), and a Response (binary
familiarity label). We use this standardized format
to unify model interaction across different training
strategies. Task-specific instructions and prompt
examples are shown in Table 3. We evaluate three
training strategies with varying supervision levels:
* Supervised: We adopt LoRA (Hu et al., 2022)
for PEFT, following findings from Tan et al.
(2024b) demonstrating its strong performance.
The model is trained to predict annotator famil-
iarity from each term and its associated abstract.
* Self-supervised: To simulate low-resource sce-
narios, we fine-tune on unlabeled titles and ab-
stracts from each annotator’s prior publications
using a causal language modeling (next-token
prediction) objective. For with < 5 publica-
tions, we augment the corpus with papers from
their self-defined subdomain, reflecting practical



cases where personalized models rely on domain-
relevant but unlabeled content.

» Semi-supervised: We examine a hybrid approach
that combines limited labeled data with the anno-
tator’s publication corpus, evaluating how much
supervision is needed to balance annotation effort
with personalization quality and to guide future
annotation strategies.

2.3 Background-Aware Prompting

Building on prior work (Guo et al., 2024; Tan et al.,
2024b), we design prompting strategies that add
varying levels of researcher-specific context to the
model input (full prompts in Table 2), differing in
both type and detail of background information:

* Metadata: Structured features including the an-
notator’s self-defined subfield (e.g., NLP, com-
puter vision), publication count, average refer-
ences, year of first publication, and the domain
of the current abstract. They serve as lightweight
indicators of expertise and familiarity.

* Profile: Following prior work on user model-
ing in personalized recommendation (Tan et al.,
2024b), we use the baseline model to generate
a natural language summary of the annotator’s
research background based on their metadata.

e Nearest Annotator: We use BM25 (Trotman
et al., 2014) to retrieve the most similar annotator
based on profile text, and use their familiarity
labels for the most similar terms as proxy input.

* Nearest Abstract: We retrieve the most similar
abstract using BM25 and use the target annota-
tor’s familiarity labels for its terms as context.

2.4 Ablation Study

To isolate the effect of personalization, we consider
two ablation settings. First, we include a vanilla
prompting setup with no additional contextual in-
formation (e.g., no metadata, profiles, or nearest-
neighbor retrieval). While still personalized, since
the model is fine-tuned on annotator specific data
(supervised, self-supervised, or semi-supervised),
this setting removes auxiliary background features.
Second, we evaluate a non-personalized baseline
using a leave-one-annotator-out scheme, where the
model is trained on data from all annotators ex-
cept the held-out one. For comparability with the
supervised personalized model, we subsample the
training data to match the same number of exam-
ples, keeping all other parameters identical.

3 Results

We compare against the best results from (Guo
et al., 2024), where the oracle uses familiarity rat-
ings from the most similar annotator and GPT-
4 prompts include five prior publications. Fig-
ure 2(a) shows validation results: supervised mod-
els plateau after 20 epochs (reported at 20), while
self-supervised models improve more gradually (re-
ported at 50).

Supervised fine-tuning outperforms GPT-4 and
oracle settings On the test set (Table 1), vanilla
prompting with a supervised personalized model
yields the highest F1 (77.9), outperforming GPT-4
with contextual prompting by 21.4% and the oracle
baseline by 8.3%. Additional prompting strate-
gies (metadata, profile, nearest annotator, nearest
abstract) do not improve over vanilla prompting,
suggesting that LoRA fine-tuning itself captures
most of the relevant personalized information. The
limited gains from these strategies may reflect ei-
ther noise in background features or insufficient
dataset size to reveal their benefits. Overall, these
findings highlight the effectiveness of full super-
vision with PEFT for modeling the link between
annotator background knowledge and jargon fa-
miliarity, while showing limited added value from
more elaborate prompting.

Self-supervised fine-tuning without annota-
tions shows limited effectiveness In the self-
supervised setting, models were fine-tuned solely
on each annotator’s published papers, without fa-
miliarity annotations. Although performance im-
proves slightly over time, overall results remain
poor, confirming that publication history alone fails
to capture familiarity judgments, consistent with
prior findings (Haghani, 2023). We exclude the
nearest annotator and nearest abstract settings from
this experiment, as they require access to annotated
familiarity labels and are therefore not applicable
in the self-supervised scenario.

Semi-supervised personalization enables effi-
cient adaptation with minimal supervision. In-
tegrating self-supervised user publication data with
only 10% of labeled training data yields an F1 of
77.0, nearly matching fully supervised performance
(71.9) and clearly surpassing models trained on
the same limited labeled data alone (63.6). This
demonstrates the value of leveraging unlabeled,
domain-relevant data to reduce annotation costs
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Figure 2: Validation performance of supervised (a), self-supervised (b), and semi-supervised (c) models for jargon
familiarity detection. Each point is a personalized model fine-tuned for one of 11 annotators with different prompting
strategies. GPT-4 and Oracle baselines are best results from (Guo et al., 2024), where the Oracle uses ratings from
the most similar annotator and GPT-4 prompts include five publications. For semi-supervised models, training steps
on the x-axis allow consistent comparison across dataset sizes and reflect relative computational cost.

Models F-1 Score 1 Recall Precision

Best results from (Guo et al., 2024)

Oracle 71.9417 76.042.1 682421

GPT-4 642115 98.7+0.5 47.6+16

Supervised

Vanilla 779412 77.8+2.2 78.0+05

Metadata 76.8+1.1 761429 777410

Profile 76.6i1,0 73-7i20 79»9i146

Nearest Annotator 721430 703141 745427

Nearest Abstract 77.8+1.1 7834117 775425

Self-supervised

Published Papers 54.6+5.1 77.5+76 450108

Semi-supervised

1% Sup 53.54238 56.0ta5 51.5432

10% Sup 63.6+2.0 59.8451  69.011.7

Self + 10% Sup 77.0+1.1 789426 7544107

Leave-one-annotator-out (no personalization)

Sup baseline 64.7410.8 639111  65.5+0.6
+ Metadata 64.340.9 62.7+15 66.140.3
+ Profile 64~9i0A8 64.8i048 65.0i0A7

Self + 10% Sup 534401 478402  60.6+0.1
+ Metadata 58.6+0.2 55.210.3 62.510.2
+ Profile 60.4+0.4 64.2403 57.0+0.4

Table 1: Performance of fine-tuned models on the test
set. Unless specified, results use vanilla prompting. Ora-
cle setting uses the familiarity ratings from the annotator
with the highest agreement on the training set for the
annotator. For GPT-4, prompts include five annotator’s
publications. The =+ values represent standard devia-
tions across 3 repeated runs to illustrate consistency.

while preserving personalization quality, improv-
ing the scalability and accessibility of personal-
ized NLP systems in settings where manual anno-
tation is costly or infeasible. Additional qualita-
tive analyses, including generalization to related
tasks, annotator-specific performance, and domain-
specific behavior, are provided in App. §B.

Personalization is necessary to solve the jargon
detection task The personalized model achieves
an F1 of 77.9, which is a 20.4% improvement
over supervised leave-one-annotator-out testing
(64.7) and a 45.9% improvement over the self-
supervised + 10% supervised setting (53.4). While
background-aware prompting with metadata or pro-
file does not improve performance over vanilla in
the personalized setting, it yields gains without
personalized annotation: profile improves F1 by
13.1% (60.4 vs. 53.4) and metadata by 9.7% (58.6
vs. 53.4). These results further underscore the
importance of personalization for jargon detection
and highlight the effectiveness of PEFT under full
supervision, with background-aware prompting of-
fering value only when annotations are limited.

4 Conclusions

In this work, we present a practical and cost-
effective approach to personalization in jargon de-
tection. By fine-tuning lightweight language mod-
els with LoRA, our method achieves significant per-
formance gains over prior work while maintaining
computational efficiency. We further show that per-
sonalized prompts grounded in a researcher’s back-
ground improve non-personalized models for fa-
miliarity prediction, providing an alternative when
direct annotations are unavailable. Remarkably,
our method achieves comparable performance with
only 10% of annotated data, underscoring its practi-
cality in resource-constrained settings where large-
scale annotation is costly or infeasible. Together,
these contributions demonstrate the effectiveness
and scalability of personalized NLP, offering a path
toward tools that improve accessibility and foster
cross-disciplinary collaboration.



Limitations

One limitation of our current work is its reliance
on a specific dataset, which is primarily focused
on computer science researchers and encompasses
a limited number of out-of-domain areas. While
this allowed for a controlled evaluation of our per-
sonalized techniques, the generalizability of our
findings to a broader range of interdisciplinary do-
mains and diverse researcher backgrounds requires
further investigation. Future work should explore
the application and evaluation of our framework
on more heterogeneous datasets that encompass
a wider spectrum of academic disciplines and re-
search profiles, to assess its robustness and adapt-
ability in more varied real-world scenarios.

Ethical Considerations

In this paper, we utilized anonymized data from
a pre-existing dataset, raising ethical considera-
tions regarding the privacy and responsible use of
researcher background information in future imple-
mentations. We acknowledge the potential for our
personalized models to inherit or amplify biases
present in pre-trained models or training data, ne-
cessitating careful evaluation across diverse user
groups to ensure equitable performance. Further-
more, we recognize the importance of clarifying jar-
gon without oversimplification and the potential for
over-reliance on such tools to impact researchers’
own interdisciplinary language development. Fi-
nally, we advocate for responsible development to
prevent unintended consequences like the creation
of echo chambers. Ongoing evaluation and com-
munity discussion are essential for navigating these
ethical complexities.
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A Setup

Evaluation Metrics To evaluate the performance
of our personalized jargon identification models,
we focus on predicting binary familiarity labels (0
for familiar, 1 for unfamiliar) for entities extracted
from research paper abstracts. Our primary evalua-
tion metric is the F-1 score. However, during our
initial baseline model selection phase, we observed
that some models struggled to consistently produce
the required binary label lists without additional
text or nonsensical information. To account for
this, we introduced the Effective F-1 Score. This
metric incorporates the “Mismatch Rate”, the pro-
portion of model outputs that did not conform to
the expected binary label format. The Effective F-1
Score is calculated as follows:

eff. F-1 score = (1 — Mis. rate) x F-1 score.

Baseline Model Selection To establish a robust
foundation for our personalized jargon identifica-
tion task using Parameter Efficient Fine-Tuning
(PEFT), we first selected a suitable open-source
Large Language Model (LLM) as our baseline. We
evaluated several state-of-the-art options, including
Llama-2 (Touvron et al., 2023), Llama-3 (Dubey
et al., 2024), Mistral v0.3 (Jiang et al., 2023), and
Qwen-2.5 (Yang et al., 2024; Team, 2024), consid-
ering both their base and instruction-tuned versions
in 4-bit and full precision.

For our implementation, we use the unsloth li-
brary with all parameters set to their default values,
including is_bfloat16_ supported. The results
of this initial evaluation (depicted in Figure 4) re-
vealed significant performance variations in terms
of both F-1 score and mismatch rate. While Qwen-
2.5 7B Instruct 4bit achieved the highest Effective
F-1 Score (0.54), and Llama-3.1 8B 4bit exhibited
the lowest mismatch rate (0.5%), we ultimately se-
lected Llama-3.1 8B Instruct 4bit as our baseline
for subsequent fine-tuning experiments. This deci-
sion was based on its robust performance (Effective
F-1 Score of 0.49) and its demonstrated ability to
follow instructions with minimal mismatches, sug-
gesting a strong potential for effective adaptation
through PEFT for our personalized jargon identifi-
cation task.

Implementation Details We fine-tuned the
unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit

model with a maximum sequence length of 2048
tokens. For parameter-efficient training, we applied

LoRA with rank 16, scaling factor (o) 16, dropout
0, and targeted the projection modules (g_proj,
k_proj, v_proj, o_proj, gate_proj, up_proj,
and down_proj). The model was trained for 100
epochs with a per-device batch size of 2 and
gradient accumulation of 4 steps, using a learning
rate of 2e-4, weight decay of 0.01, and the AdamW
(8-bit) optimizer with a linear scheduler and 5
warmup steps. Training was conducted in FP16 or
BF16 precision depending on hardware support.
Checkpoints were saved every epoch_size * 10
// 8 steps (approximately every 10 epochs).

B Additional Analysis

B.1 Does the familiarity model generalize
over other personalized tasks?

In this part of the experiment, we evaluate whether
the finetuned models, trained on familiarity anno-
tations, can generalize to related but unseen tasks.
Specifically, we test whether the models can pre-
dict annotators’ need for additional information
(e.g., definitions, background, or examples), a task
structurally different from the original familiarity
labeling. This setup allows us to examine whether
the models have truly internalized the annotators’
knowledge levels, or if their performance is simply
a result of alignment with the annotation distribu-
tion.

Figure 3 demonstrates the strong generalization
of our fine-tuned models, achieving performance
on definition and background knowledge tasks com-
parable to prior best Lasso regression models (with-
out explicit fine-tuning on this data) and signifi-
cantly outperforming them on predicting the need
for additional examples. These results suggest that
supervised LoRA fine-tuning effectively captures
not just annotation patterns but also a robust se-
mantic understanding of the annotators’ domain
expertise.

B.2 Model Improvement Analysis in Terms of
Individual Annotators

Taking annotator #4 as the object, a qualitative
analysis of the missed and falsely detected jargon
reveals several interesting patterns. The baseline
model (trained with 1% training set), while show-
ing some capability in jargon detection, struggled
with terms that exhibit a combination of character-
istics. Firstly, it frequently failed to identify the
terms as jargon that are relatively short and com-
posed of common words but carry highly specific
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meanings within a particular domain. Examples
include ‘Radial curves’ (Materials Science), ‘Op-
amp’ (Physics), and ‘Domains’ (Geology). These
terms, due to their brevity and seemingly ordi-
nary components, may have been harder for the
baseline to differentiate from general language
use. Secondly, the baseline model had difficulty
with multi-word terms where the meaning is not
a straightforward combination of the individual
words, but rather a more nuanced concept. This
is evident in its failure to identify ‘Bayesian opti-
mal mechanism’ (Economics), ‘Riemannian frame-
work’ (Materials Science), ‘Bose-Einstein conden-
sate’ (Physics), ‘Psychometric properties’ (Eco-
nomics), ‘Dialectical quality’ (Philosophy), ‘Ex-
planatory account’ (Linguistics), ‘Long-range or-
dered coupling’ (Physics, Materials Science), and
‘Qualitative spatio-temporal inferences’ (Psychol-
ogy). In these cases, the model may have lacked
the ability to capture the semantic relationships
and contextual dependencies necessary for accu-
rate identification. Thirdly, the baseline also missed
acronyms like ‘CW-SSIM’ (Agricultural And Food
Sciences), ‘MANOVA’ (Education), and ‘ARMAX
model’ (Business, Engineering). Acronyms often
present a challenge due to their condensed nature
and lack of explicit semantic clues. Finally, there
were instances where the jargon term spans mul-
tiple disciplines, such as ‘Monolayers’ (Engineer-
ing, Biology), ‘Peri-implant bone density’ (Ma-
terials Science, Medicine, Biology), and ‘Regu-
latory mechanisms’ (Biology, Environmental Sci-
ence), which might have added to the difficulty.
While the improved model demonstrated a higher
F1 score, indicative of better overall performance,
it exhibited a tendency to produce more false pos-
itives. These false positives included terms like
‘Savitzky-Golay (SG) filter’ (Environmental Sci-
ence), ‘Meta-analyses’ (Medicine), ‘Post-test’ (Ed-
ucation), ‘Quantitative research’ (Education), and



‘Content analysis’ (Medicine). This suggests that
the improved model, in its attempt to capture a
broader range of jargon, may be more sensitive
to terms that share some characteristics with jar-
gon but are more commonly used or understood.
This could indicate a trade-off where the improved
model sacrifices some precision for increased re-
call, potentially overgeneralizing in certain con-
texts. Specifically, the improved model appears
to be more prone to misclassifying statistical or
methodological terms (e.g., ‘Meta-analyses’, ‘Post-
test’, ‘Quantitative research’) as jargon, possibly
due to their frequent occurrence in academic con-
texts, even when they are relatively well understood
within the broader research community.

B.3 Model Analysis in Terms of Jargon
Domain
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Figure 6: Supervised model performance difference for
nearest abstract versus vanilla.

In this study, the two best models are selected,
which are 100% TS with vanilla and nearest ab-
stract (NAb) prompting. When comparing the two
models across the ‘Art’” and ‘Philosophy’ domains,
a nuanced performance profile emerges. In the ‘Art’
domain, the vanilla model exhibits a higher false
positive rate, incorrectly identifying terms like ‘Re-
actions’ and ‘Stylistic’ as jargon, whereas the NAb
model correctly classifies them. This suggests that
vanilla model may be overly sensitive to terms that,
while potentially used in art-related contexts, also
have broader, common usage.

Conversely, in the ‘Philosophy’ domain, NAb
model faces challenges in both precision and re-

call. It exhibits a higher false positive rate, mis-
classifying terms such as ‘Structural constraints’,
‘Analytic philosophers’, and ‘Argument Facets’.
This indicates a tendency to over-identify com-
mon philosophical terms as highly specialized
jargon. Furthermore, NAb model also demon-
strates lower recall in the Philosophy domain,
failing to detect several jargon terms, including
‘Computational argumentation’, ‘Corpus with 320
arguments’, ‘Nonmonotonic inference methods’,
‘Super-knotty rope’, ‘Super-knot’, and ‘Dialecti-
cal quality’. These terms represent complex philo-
sophical concepts that the NAb model struggles to
recognize as domain-specific jargon.



Strategies

Related data

Vanilla

"

(empty string)

Metadata

"Self-defined subfield of the reader is: {} Number of papers published by the
reader is: {} Number of papers referenced by the reader is: {} Year of the
first paper published by the reader is: {} Domain of study of the paper is: {}"

Profile-enhancement

"This reader is a domain expert in natural language processing (NLP) ..."
(Machine-generated profile)

Nearest annotator

Another researcher similar to the reader has read the same abstract. For
the entity list {entity_list}, this researcher provides the familiarity list as
{familiarity_list}.

Nearest abstract

For another similar abstract with the entity list {entity_list}, this reader
provides the familiarity list as {familiarity_list}.

Table 2: The prompting strategies for both supervised fine-tuning and inference.

10



Tasks

Instructions

Prompt

Familiarity
classifica-
tion

Your job is to estimate how much the reader knows
about an entity. You will be provided with the entity,
the abstract where the entity came from, and related
data about either the reader or the abstract. Your
answer should be a list of binary, either O or 1, of the
same length as the entity list, with no other words.

Entity: {entity} Abstract: {abstract} Additional
information: {related_data} Here’s how to gauge
the reader’s familiarity: - O: The reader knows this
subject well and can describe it to others. - 1: The
reader has either encountered this subject before but
knows little about it, or has never come across it at
all. Based on the information provided, determine
familiarity score list corresponding to the entity list,
a list of either O or 1:

Definition
needs classi-
fication

You are tasked with predicting whether the reader
might need additional Definition/Explanation to
fully grasp the entities mentioned in a given abstract.
You will be provided with the entity list, the abstract
where the entities come from, and related data per-
tinent to the reader or the abstract. Definition of
definition/explanation: provides key information on
the term independent of any context (e.g., a specific
scientific abstract). A definition answers the ques-
tion, "What is/are [term]?"

Entity: {entity} Abstract: {abstract} Additional
information: {related_data} Provide the estimation
whether additional information is needed in a list
in the order of the entity. The estimation should
be either O(no) or 1(yes). No need to mention the
entity:

Background
needs classi-
fication

You are tasked with predicting whether the reader
might need additional Background/Motivation
to fully grasp the entities mentioned in a given ab-
stract. You will be provided with the entity list,
the abstract where the entities come from, and re-
lated data pertinent to the reader or the abstract.
Definition of background/motivation: introduces
information that is important for understanding the
term in the context of the abstract. Background can
provide information about how the term relates to
overall problem, significance, and motivation of the
abstract.

Entity: {entity} Abstract: {abstract} Additional
information: {related_data} Provide the estimation
whether additional information is needed in a list
in the order of the entity. The estimation should
be either O(no) or 1(yes). No need to mention the
entity:

Example
needs classi-
fication

You are tasked with predicting whether the reader
might need additional Example to fully grasp the
entities mentioned in a given abstract. You will be
provided with the entity list, the abstract where the
entities come from, and related data pertinent to the
reader or the abstract. Definition of example: offers
specific instances that help illustrate the practical
application or usage of the term within the abstract.

Entity: {entity} Abstract: {abstract} Additional
information: {related_data} Provide the estimation
whether additional information is needed in a list
in the order of the entity. The estimation should
be either O(no) or 1(yes). No need to mention the
entity:

Table 3: The configuration of instructions and prompts for training and inference, following the prompting format

from the previous work (Guo et al., 2024).
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